Solutions to Try Its
1. a. 35
b. 330
2. a. x5−5x4y+10x3y2−10x2y3+5xy4−y5
b. 8x3+60x2y+150xy2+125y3
3. −10,206x4y5
Solutions to Odd-Numbered Exercises
1. A binomial coefficient is an alternative way of denoting the combination C(n,r). It is defined as (nr)=C(n,r)=n!r!(n−r)!.
3. The Binomial Theorem is defined as (x+y)n=∑nk=0(nk)xn−kyk and can be used to expand any binomial.
5. 15
7. 35
9. 10
11. 12,376
13. 64a3−48a2b+12ab2−b3
15. 27a3+54a2b+36ab2+8b3
17. 1024x5+2560x4y+2560x3y2+1280x2y3+320xy4+32y5
19. 1024x5−3840x4y+5760x3y2−4320x2y3+1620xy4−243y5
21. 1x4+8x3y+24x2y2+32xy3+16y4
23. a17+17a16b+136a15b2
25. a15−30a14b+420a13b2
27. 3,486,784,401a20+23,245,229,340a19b+73,609,892,910a18b2
29. x24−8x21√y+28x18y
31. −720x2y3
33. 220,812,466,875,000y7
35. 35x3y4
37. 1,082,565a3b16
39. 1152y2x7
41. f2(x)=x4+12x3

43. f4(x)=x4+12x3+54x2+108x

45. 590,625x5y2
47. (nk−1)+(nk)=(n+1k); Proof:
(nk−1)+(nk)=n!k!(n−k)!+n!(k−1)!(n−(k−1))!=n!k!(n−k)!+n!(k−1)!(n−k+1)!=(n−k+1)n!(n−k+1)k!(n−k)!+kn!k(k−1)!(n−k+1)!=(n−k+1)n!+kn!k!(n−k+1)!=(n+1)n!k!((n+1)−k)!=(n+1)!k!((n+1)−k)!=(n+1k)
49. The expression (x3+2y2−z)5 cannot be expanded using the Binomial Theorem because it cannot be rewritten as a binomial.
Candela Citations
CC licensed content, Specific attribution