Solutions

Solutions to Try Its

1. a. 35
b. 330

2. a. x55x4y+10x3y210x2y3+5xy4y5
b. 8x3+60x2y+150xy2+125y3

3. 10,206x4y5

Solutions to Odd-Numbered Exercises

1. A binomial coefficient is an alternative way of denoting the combination C(n,r). It is defined as (nr)=C(n,r)=n!r!(nr)!.

3. The Binomial Theorem is defined as (x+y)n=k=0n(nk)xnkyk and can be used to expand any binomial.

5. 15

7. 35

9. 10

11. 12,376

13. 64a348a2b+12ab2b3

15. 27a3+54a2b+36ab2+8b3

17. 1024x5+2560x4y+2560x3y2+1280x2y3+320xy4+32y5

19. 1024x53840x4y+5760x3y24320x2y3+1620xy4243y5

21. 1x4+8x3y+24x2y2+32xy3+16y4

23. a17+17a16b+136a15b2

25. a1530a14b+420a13b2

27. 3,486,784,401a20+23,245,229,340a19b+73,609,892,910a18b2

29. x248x21y+28x18y

31. 720x2y3

33. 220,812,466,875,000y7

35. 35x3y4

37. 1,082,565a3b16

39. 1152y2x7

41. f2(x)=x4+12x3
Graph of the function f_2.

43. f4(x)=x4+12x3+54x2+108x
Graph of the function f_4.

45. 590,625x5y2

47. (nk1)+(nk)=(n+1k); Proof:
(nk1)+(nk)=n!k!(nk)!+n!(k1)!(n(k1))!=n!k!(nk)!+n!(k1)!(nk+1)!=(nk+1)n!(nk+1)k!(nk)!+kn!k(k1)!(nk+1)!=(nk+1)n!+kn!k!(nk+1)!=(n+1)n!k!((n+1)k)!=(n+1)!k!((n+1)k)!=(n+1k)

49. The expression (x3+2y2z)5 cannot be expanded using the Binomial Theorem because it cannot be rewritten as a binomial.