Solutions

Solutions to Try Its

1. x2+y216=1x2+y216=1

2. (x1)216+(y3)24=1(x1)216+(y3)24=1

3. center: (0,0)(0,0); vertices: (±6,0)(±6,0); co-vertices: (0,±2)(0,±2); foci: (±42,0)(±42,0)

4. Standard form: x216+y249=1x216+y249=1; center: (0,0)(0,0); vertices: (0,±7)(0,±7); co-vertices: (±4,0)(±4,0); foci: (0,±33)(0,±33)

5. Center: (4,2)(4,2); vertices: (2,2)(2,2) and (10,2)(10,2); co-vertices: (4,225)(4,225) and (4,2+25)(4,2+25); foci: (0,2)(0,2) and (8,2)(8,2)

6. (x3)24+(y+1)216=1(x3)24+(y+1)216=1; center: (3,1)(3,1); vertices: (3,5)(3,5) and (3,3)(3,3); co-vertices: (1,1)(1,1) and (5,1)(5,1); foci: (3,123)(3,123) and (3,1+23)(3,1+23)

7. a. x257,600+y225,600=1x257,600+y225,600=1
b. The people are standing 358 feet apart.

Solutions to Odd-Numbered Exercises

1. An ellipse is the set of all points in the plane the sum of whose distances from two fixed points, called the foci, is a constant.

3. This special case would be a circle.

5. It is symmetric about the x-axis, y-axis, and the origin.

7. yes; x232+y222=1x232+y222=1

9. yes; x2(12)2+y2(13)2=1x2(12)2+y2(13)2=1

11. x222+y272=1x222+y272=1; Endpoints of major axis (0,7)(0,7) and (0,7)(0,7). Endpoints of minor axis (2,0)(2,0) and (2,0)(2,0). Foci at (0,35),(0,35)(0,35),(0,35).

13. x2(1)2+y2(13)2=1x2(1)2+y2(13)2=1; Endpoints of major axis (1,0)(1,0) and (1,0)(1,0). Endpoints of minor axis (0,13),(0,13)(0,13),(0,13). Foci at (223,0),(223,0)(223,0),(223,0).

15. (x2)272+(y4)252=1(x2)272+(y4)252=1; Endpoints of major axis (9,4),(5,4)(9,4),(5,4). Endpoints of minor axis (2,9),(2,1)(2,9),(2,1). Foci at (2+26,4),(226,4)(2+26,4),(226,4).

17. (x+5)222+(y7)232=1(x+5)222+(y7)232=1; Endpoints of major axis (5,10),(5,4)(5,10),(5,4). Endpoints of minor axis (3,7),(7,7)(3,7),(7,7). Foci at (5,7+5),(5,75)(5,7+5),(5,75).

19. (x1)232+(y4)222=1(x1)232+(y4)222=1; Endpoints of major axis (4,4),(2,4)(4,4),(2,4). Endpoints of minor axis (1,6),(1,2)(1,6),(1,2). Foci at (1+5,4),(15,4)(1+5,4),(15,4).

21. (x3)2(32)2+(y5)2(2)2=1(x3)2(32)2+(y5)2(2)2=1; Endpoints of major axis (3+32,5),(332,5)(3+32,5),(332,5). Endpoints of minor axis (3,5+2),(3,52)(3,5+2),(3,52). Foci at (7,5),(1,5)(7,5),(1,5).

23. (x+5)2(5)2+(y2)2(2)2=1(x+5)2(5)2+(y2)2(2)2=1; Endpoints of major axis (0,2),(10,2)(0,2),(10,2). Endpoints of minor axis (5,4),(5,0)(5,4),(5,0). Foci at (5+21,2),(521,2)(5+21,2),(521,2).

25. (x+3)2(5)2+(y+4)2(2)2=1(x+3)2(5)2+(y+4)2(2)2=1; Endpoints of major axis (2,4),(8,4)(2,4),(8,4). Endpoints of minor axis (3,2),(3,6)(3,2),(3,6). Foci at (3+21,4),(321,4)(3+21,4),(321,4).

27. Foci (3,1+11),(3,111)(3,1+11),(3,111)

29. Focus (0,0)(0,0)

31. Foci (10,30),(10,30)(10,30),(10,30)

33. Center (0,0)(0,0), Vertices (4,0),(4,0),(0,3),(0,3)(4,0),(4,0),(0,3),(0,3), Foci (7,0),(7,0)(7,0),(7,0)

35. Center (0,0)(0,0), Vertices (19,0),(19,0),(0,17),(0,17)(19,0),(19,0),(0,17),(0,17), Foci (0,4263),(0,4263)(0,4263),(0,4263)

37. Center (3,3)(3,3), Vertices (0,3),(6,3),(3,0),(3,6)(0,3),(6,3),(3,0),(3,6), Focus (3,3)(3,3)
Note that this ellipse is a circle. The circle has only one focus, which coincides with the center.

39. Center (1,1)(1,1), Vertices (5,1),(3,1),(1,3),(1,1)(5,1),(3,1),(1,3),(1,1), Foci (1,1+43),(1,143)(1,1+43),(1,143)

41. Center (4,5)(4,5), Vertices (2,5),(6,4),(4,6),(4,4)(2,5),(6,4),(4,6),(4,4), Foci (4+3,5),(43,5)(4+3,5),(43,5)

43. Center (2,1)(2,1), Vertices (0,1),(4,1),(2,5),(2,3)(0,1),(4,1),(2,5),(2,3), Foci (2,1+23),(2,123)(2,1+23),(2,123)

45. Center (2,2)(2,2), Vertices (0,2),(4,2),(2,0),(2,4)(0,2),(4,2),(2,0),(2,4), Focus (2,2)(2,2)

47. x225+y229=1x225+y229=1

49. (x4)225+(y2)21=1(x4)225+(y2)21=1

51. (x+3)216+(y4)24=1(x+3)216+(y4)24=1

53. x281+y29=1x281+y29=1

55. (x+2)24+(y2)29=1

57. Area=12π square units

59. Area=25π square units

61. Area 9π square units

63. x24h2+y214h2=1

65. x2400+y2144=1. Distance = 17.32 feet

67. Approximately 51.96 feet