Solutions to Try Its
1. AB=[14−1−3][−3−411]=[1(−3)+4(1)1(−4)+4(1)−1(−3)+−3(1)−1(−4)+−3(1)]=[1001]BA=[−3−411][14−1−3]=[−3(1)+−4(−1)−3(4)+−4(−3)1(1)+1(−1)1(4)+1(−3)]=[1001]
2. A−1=[3515−2515]
3. A−1=[11224−336−5]
4. X=[43858]
Solutions to Odd-Numbered Exercises
1. If A−1 is the inverse of A, then AA−1=I, the identity matrix. Since A is also the inverse of A−1,A−1A=I. You can also check by proving this for a 2×2 matrix.
3. No, because ad and bc are both 0, so ad−bc=0, which requires us to divide by 0 in the formula.
5. Yes. Consider the matrix [0110]. The inverse is found with the following calculation: A−1=10(0)−1(1)[0−1−10]=[0110].
7. AB=BA=[1001]=I
9. AB=BA=[1001]=I
11. AB=BA=[100010001]=I
13. 129[92−13]
15. 169[−2793]
17. There is no inverse
19. 47[0.51.51−0.5]
21. 117[−55−320−3121−14]
23. 1209[47−57691019−12−2438−13]
25. [1860−168−56−1404484080−280]
27. (−5,6)
29. (2,0)
31. (13,−52)
33. (−23,−116)
35. (7,12,15)
37. (5,0,−1)
39. 134(−35,−97,−154)
41. 1690(65,−1136,−229)
43. (−3730,815)
45. (10123,−1,25)
47. 12[21−1−1011−10−11101−11]
49. 139[321−718−53321024−36219−946−16−5]
51. [100000010000001000000100000010−1−1−1−1−11]
53. Infinite solutions.
55. 50% oranges, 25% bananas, 20% apples
57. 10 straw hats, 50 beanies, 40 cowboy hats
59. Tom ate 6, Joe ate 3, and Albert ate 3.
61. 124 oranges, 10 lemons, 8 pomegranates
Candela Citations
- Precalculus. Authored by: OpenStax College. Provided by: OpenStax. Located at: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175:1/Preface. License: CC BY: Attribution