Solutions to Try Its
1. 3x−3−2x−2
2. 6x−1−5(x−1)2
3. 3x−1+2x−4x2+1
4. x−2x2−2x+3+2x+1(x2−2x+3)2
Solutions to Odd-Numbered Exercises
1. No, a quotient of polynomials can only be decomposed if the denominator can be factored. For example, 1x2+1 cannot be decomposed because the denominator cannot be factored.
3. Graph both sides and ensure they are equal.
5. If we choose x=−1, then the B-term disappears, letting us immediately know that A=3. We could alternatively plug in x=−53, giving us a B-value of −2.
7. 8x+3−5x−8
9. 1x+5+9x+2
11. 35x−2+44x−1
13. 52(x+3)+52(x−3)
15. 3x+2+3x−2
17. 95(x+2)+115(x−3)
19. 8x−3−5x−2
21. 1x−2+2(x−2)2
23. −64x+5+3(4x+5)2
25. −1x−7−2(x−7)2
27. 4x−32(x+1)+72(x+1)2
29. 4x+2x2−33x+2+72(3x+2)2
31. x+1x2+x+3+3x+2
33. 4−3xx2+3x+8+1x−1
35. 2x−1x2+6x+1+2x+3
37. 1x2+x+1+4x−1
39. 2x2−3x+9+3x+3
41. −14x2+6x+9+12x−3
43. 1x+1x+6−4xx2−6x+36
45. x+6x2+1+4x+3(x2+1)2
47. x+1x+2+2x+3(x+2)2
49. 1x2+3x+25−3x(x2+3x+25)2
51. 18x−x8(x2+4)+10−x2(x2+4)2
53. −16x−9x2+16x−1−7(x−1)2
55. 1x+1−2(x+1)2+5(x+1)3
57. 5x−2−310(x+2)+7x+8−710(x−8)
59. −54x−52(x+2)+112(x+4)+54(x+4)
Candela Citations
CC licensed content, Specific attribution