Solutions

Solutions to Try Its

1. logb2+logb2+logb2+logbk=3logb2+logbk

2. log3(x+3)log3(x1)log3(x2)

3. 2lnx

4. 2ln(x)

5. log316

6. 2logx+3logy4logz

7. 23lnx

8. 12ln(x1)+ln(2x+1)ln(x+3)ln(x3)

9. log(3546); can also be written log(58) by reducing the fraction to lowest terms.

10. log(5(x1)3x(7x1))

11. logx12(x+5)4(2x+3)4; this answer could also be written log(x3(x+5)(2x+3))4.

12. The pH increases by about 0.301.

13. ln8ln0.5

14. ln100ln54.60511.6094=2.861

Solutions to Odd-Numbered Exercises

1. Any root expression can be rewritten as an expression with a rational exponent so that the power rule can be applied, making the logarithm easier to calculate. Thus, logb(x1n)=1nlogb(x).

3. logb(2)+logb(7)+logb(x)+logb(y)

5. logb(13)logb(17)

7. kln(4)

9. ln(7xy)

11. logb(4)

13. logb(7)

15. 15log(x)+13log(y)19log(z)

17. 32log(x)2log(y)

19. 83log(x)+143log(y)

21. ln(2x7)

23. log(xz3y)

25. log7(15)=ln(15)ln(7)

27. log11(5)=log5(5)log5(11)=1b

29. log11(611)=log5(611)log5(11)=log5(6)log5(11)log5(11)=abb=ab1

31. 3

33. 2.81359

35. 0.93913

37. –2.23266

39. = 4; By the quotient rule: log6(x+2)log6(x3)=log6(x+2x3)=1.

Rewriting as an exponential equation and solving for x:

{61=x+2x30=x+2x360=x+2x36(x3)(x3)0=x+26x+18x30=x4x3 x=4

Checking, we find that log6(4+2)log6(43)=log6(6)log6(1) is defined, so = 4.

41. Let b and n be positive integers greater than 1. Then, by the change-of-base formula, logb(n)=logn(n)logn(b)=1logn(b).