Solutions to Try Its
1. logb2+logb2+logb2+logbk=3logb2+logbk
2. log3(x+3)−log3(x−1)−log3(x−2)
3. 2lnx
4. −2ln(x)
5. log316
6. 2logx+3logy−4logz
7. 23lnx
8. 12ln(x−1)+ln(2x+1)−ln(x+3)−ln(x−3)
9. log(3⋅54⋅6); can also be written log(58) by reducing the fraction to lowest terms.
10. log(5(x−1)3√x(7x−1))
11. logx12(x+5)4(2x+3)4; this answer could also be written log(x3(x+5)(2x+3))4.
12. The pH increases by about 0.301.
13. ln8ln0.5
14. ln100ln5≈4.60511.6094=2.861
Solutions to Odd-Numbered Exercises
1. Any root expression can be rewritten as an expression with a rational exponent so that the power rule can be applied, making the logarithm easier to calculate. Thus, logb(x1n)=1nlogb(x).
3. logb(2)+logb(7)+logb(x)+logb(y)
5. logb(13)−logb(17)
7. −kln(4)
9. ln(7xy)
11. logb(4)
13. logb(7)
15. 15log(x)+13log(y)−19log(z)
17. 32log(x)−2log(y)
19. 83log(x)+143log(y)
21. ln(2x7)
23. log(xz3√y)
25. log7(15)=ln(15)ln(7)
27. log11(5)=log5(5)log5(11)=1b
29. log11(611)=log5(611)log5(11)=log5(6)−log5(11)log5(11)=a−bb=ab−1
31. 3
33. 2.81359
35. 0.93913
37. –2.23266
39. x = 4; By the quotient rule: log6(x+2)−log6(x−3)=log6(x+2x−3)=1.
Rewriting as an exponential equation and solving for x:
⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩61=x+2x−30=x+2x−3−60=x+2x−3−6(x−3)(x−3)0=x+2−6x+18x−30=x−4x−3 x=4
Checking, we find that log6(4+2)−log6(4−3)=log6(6)−log6(1) is defined, so x = 4.
41. Let b and n be positive integers greater than 1. Then, by the change-of-base formula, logb(n)=logn(n)logn(b)=1logn(b).
Candela Citations
CC licensed content, Shared previously