Solutions

Solutions to Try Its

1. y-intercept (0,0); x-intercepts (0,0),(5,0),(2,0), and (3,0)

2. The graph has a zero of –5 with multiplicity 1, a zero of –1 with multiplicity 2, and a zero of 3 with even multiplicity.

3.
Graph of f(x)=(1/4)x(x-1)^4(x+3)^3.

4. Because f is a polynomial function and since f(1) is negative and f(2) is positive, there is at least one real zero between x=1 and x=2.

5. f(x)=18(x2)3(x+1)2(x4)

6. The minimum occurs at approximately the point (0,6.5), and the maximum occurs at approximately the point (3.5,7).

Solutions to Odd-Numbered Exercises

1. The x-intercept is where the graph of the function crosses the x-axis, and the zero of the function is the input value for which f(x)=0.

3. If we evaluate the function at a and at b and the sign of the function value changes, then we know a zero exists between a and b.

5. There will be a factor raised to an even power.

7. (2,0),(3,0),(5,0)

9. (3,0),(1,0),(0,0)

11. (0,0), (5,0), (2,0)

13. (0,0), (5,0), (4,0)

15. (2,0), (2,0), (1,0)

17. (2,0),(2,0),(12,0)

19. (1,0), (1,0)

21. (0,0),(3,0),(3,0)

23. (0,0), (1,0)(1,0), (2,0), (2,0)

25. f(2)=10 and f(4)=28. Sign change confirms.

27. f(1)=3 and f(3)=77. Sign change confirms.

29. f(0.01)=1.000001 and f(0.1)=7.999. Sign change confirms.

31. 0 with multiplicity 2, 32 with multiplicity 5, 4 with multiplicity 2

33. 0 with multiplicity 2, –2 with multiplicity 2

35. 23 with multiplicity 5,5 with multiplicity 2

37. 0 with multiplicity 4,2 with multiplicity 1,1 with multiplicity 1

39. 32 with multiplicity 2, 0 with multiplicity 3

41. 0 with multiplicity 6,23 with multiplicity 2

43. x-intercepts, (1,0) with multiplicity 2, (4,0) with multiplicity 1, y-intercept (0,4). As xf(x) , as xf(x) .
Graph of g(x)=(x+4)(x-1)^2.

45. x-intercepts (3,0) with multiplicity 3, (2,0) with multiplicity 2, y-intercept (0,108) . As xf(x) , as xf(x).
Graph of k(x)=(x-3)^3(x-2)^2.

47. x-intercepts (0,0),(2,0),(4,0) with multiplicity 1, y-intercept (0,0). As xf(x) , as xf(x).
Graph of n(x)=-3x(x+2)(x-4).

49. f(x)=29(x3)(x+1)(x+3)

51. f(x)=14(x+2)2(x3)

53. –4, –2, 1, 3 with multiplicity 1

55. –2, 3 each with multiplicity 2

57. f(x)=23(x+2)(x1)(x3)

59. f(x)=13(x3)2(x1)2(x+3)

61. f(x)=15(x1)2(x3)3

63. f(x)=2(x+3)(x+2)(x1)

65. f(x)=32(2x1)2(x6)(x+2)

67. local max (.58, -.62), local min (.58, -1.38)

69. global min (.63, -.47)

71. global min (.75, .89)

73. f(x)=(x500)2(x+200)

75. f(x)=4x336x2+80x

77. f(x)=4x336x2+60x+100

79. f(x)=π(9x3+45x2+72x+36)