Solutions

Solutions for Try Its

1. {(fg)(x)=f(x)g(x)=(x1)(x21)=x3x2x+1(fg)(x)=f(x)g(x)=(x1)(x21)=xx2{(fg)(x)=f(x)g(x)=(x1)(x21)=x3x2x+1(fg)(x)=f(x)g(x)=(x1)(x21)=xx2
No, the functions are not the same.

2. A gravitational force is still a force, so a(G(r))a(G(r)) makes sense as the acceleration of a planet at a distance r from the Sun (due to gravity), but G(a(F))G(a(F)) does not make sense.

3. f(g(1))=f(3)=3f(g(1))=f(3)=3 and g(f(4))=g(1)=3g(f(4))=g(1)=3

4. g(f(2))=g(5)=3g(f(2))=g(5)=3

5. A. 8; B. 20

6. [4,0)(0,)[4,0)(0,)

7. Possible answer:

g(x)=4+x2g(x)=4+x2

h(x)=43xh(x)=43x

f=hgf=hg

 
 

Solutions to Odd-Numbered Exercises

1. Find the numbers that make the function in the denominator gg equal to zero, and check for any other domain restrictions on ff and gg, such as an even-indexed root or zeros in the denominator.

3. Yes. Sample answer: Let f(x)=x+1 and g(x)=x1f(x)=x+1 and g(x)=x1. Then f(g(x))=f(x1)=(x1)+1=xf(g(x))=f(x1)=(x1)+1=x and g(f(x))=g(x+1)=(x+1)1=xg(f(x))=g(x+1)=(x+1)1=x. So fg=gffg=gf.

5. (f+g)(x)=2x+6(f+g)(x)=2x+6, domain: (,)(,)

(fg)(x)=2x2+2x6(fg)(x)=2x2+2x6, domain: (,)(,)

(fg)(x)=x42x3+6x2+12x(fg)(x)=x42x3+6x2+12x, domain: (,)(,)

(fg)(x)=x2+2x6x2(fg)(x)=x2+2x6x2, domain: (,6)(6,6)(6,)(,6)(6,6)(6,)

7. (f+g)(x)=4x3+8x2+12x(f+g)(x)=4x3+8x2+12x, domain: (,0)(0,)(,0)(0,)

(fg)(x)=4x3+8x212x(fg)(x)=4x3+8x212x, domain: (,0)(0,)(,0)(0,)

(fg)(x)=x+2(fg)(x)=x+2, domain: (,0)(0,)(,0)(0,)

(fg)(x)=4x3+8x2(fg)(x)=4x3+8x2, domain: (,0)(0,)(,0)(0,)

9. (f+g)(x)=3x2+x5(f+g)(x)=3x2+x5, domain: [5,)[5,)

(fg)(x)=3x2x5(fg)(x)=3x2x5, domain: [5,)[5,)

(fg)(x)=3x2x5(fg)(x)=3x2x5, domain: [5,)[5,)

(fg)(x)=3x2x5(fg)(x)=3x2x5, domain: (5,)(5,)

11. a. 3; b. f(g(x))=2(3x5)2+1f(g(x))=2(3x5)2+1; c. f(g(x))=6x22f(g(x))=6x22; d. (gg)(x)=3(3x5)5=9x20(gg)(x)=3(3x5)5=9x20; e. (ff)(2)=163(ff)(2)=163

13. f(g(x))=x2+3+2,g(f(x))=x+4x+7f(g(x))=x2+3+2,g(f(x))=x+4x+7

15. f(g(x))=3x+1x3=3x+1x,g(f(x))=3x+1xf(g(x))=3x+1x3=3x+1x,g(f(x))=3x+1x

17. (fg)(x)=12x+44=x2, (gf)(x)=2x4(fg)(x)=12x+44=x2, (gf)(x)=2x4

19. f(g(h(x)))=(1x+3)2+1f(g(h(x)))=(1x+3)2+1

21. a. (gf)(x)=324x(gf)(x)=324x; b. (,12)(,12)

23. a. (0,2)(2,)(0,2)(2,); b. (,2)(2,)(,2)(2,); c. (0,)(0,)

25. (1,)(1,)

27. sample: {f(x)=x3g(x)=x5{f(x)=x3g(x)=x5

29. sample: {f(x)=4xg(x)=(x+2)2{f(x)=4xg(x)=(x+2)2

31. sample: {f(x)=3xg(x)=12x3{f(x)=3xg(x)=12x3

33. sample: {f(x)=4xg(x)=3x2x+5{f(x)=4xg(x)=3x2x+5

35. sample: f(x)=xf(x)=x
g(x)=2x+6g(x)=2x+6

37.sample: f(x)=3xf(x)=3x
g(x)=(x1)g(x)=(x1)

39. sample: f(x)=x3f(x)=x3
g(x)=1x2g(x)=1x2

41. sample: f(x)=xf(x)=x
g(x)=2x13x+4g(x)=2x13x+4

43. 2

45. 5

47. 4

49. 0

51. 2

53. 1

55. 4

57. 4

59. 9

61. 4

63. 2

65. 3

67. 11

69. 0

71. 7

73. f(g(0))=27,g(f(0))=94f(g(0))=27,g(f(0))=94

75. f(g(0))=15,g(f(0))=5f(g(0))=15,g(f(0))=5

77. 18x2+60x+5118x2+60x+51

79. gg(x)=9x+20gg(x)=9x+20

81. 2

83. (,)(,)

85. False

87. (fg)(6)=6(fg)(6)=6 ; (gf)(6)=6(gf)(6)=6

89. (fg)(11)=11,(gf)(11)=11(fg)(11)=11,(gf)(11)=11

91. c. Solve A(m(t))=4A(m(t))=4.

93. A(t)=π(25t+2)2A(t)=π(25t+2)2 and A(2)=π(254)2=2500πA(2)=π(254)2=2500π square inches

95. A(5)=π(2(5)+1)2=121πA(5)=π(2(5)+1)2=121π square units

97. a. N(T(t))=23(5t+1.5)256(5t+1.5)+1N(T(t))=23(5t+1.5)256(5t+1.5)+1;
b. 3.38 hours