Like the graphs of other equations, the graph of an **ellipse** can be translated. If an ellipse is translated [latex]h[/latex] units horizontally and [latex]k[/latex] units vertically, the center of the ellipse will be [latex]\left(h,k\right)[/latex]. This **translation** results in the standard form of the equation we saw previously, with [latex]x[/latex] replaced by [latex]\left(x-h\right)[/latex] and *y* replaced by [latex]\left(y-k\right)[/latex].

### A General Note: Standard Forms of the Equation of an Ellipse with Center (*h*, *k*)

The standard form of the equation of an ellipse with center [latex]\left(h,\text{ }k\right)[/latex] and **major axis** parallel to the *x*-axis is

where

- [latex]a>b[/latex]
- the length of the major axis is [latex]2a[/latex]
- the coordinates of the vertices are [latex]\left(h\pm a,k\right)[/latex]
- the length of the minor axis is [latex]2b[/latex]
- the coordinates of the co-vertices are [latex]\left(h,k\pm b\right)[/latex]
- the coordinates of the foci are [latex]\left(h\pm c,k\right)[/latex], where [latex]{c}^{2}={a}^{2}-{b}^{2}[/latex].

The standard form of the equation of an ellipse with center [latex]\left(h,k\right)[/latex] and major axis parallel to the *y*-axis is

where

- [latex]a>b[/latex]
- the length of the major axis is [latex]2a[/latex]
- the coordinates of the vertices are [latex]\left(h,k\pm a\right)[/latex]
- the length of the minor axis is [latex]2b[/latex]
- the coordinates of the co-vertices are [latex]\left(h\pm b,k\right)[/latex]
- the coordinates of the foci are [latex]\left(h,k\pm c\right)[/latex], where [latex]{c}^{2}={a}^{2}-{b}^{2}[/latex].

Just as with ellipses centered at the origin, ellipses that are centered at a point [latex]\left(h,k\right)[/latex] have vertices, co-vertices, and foci that are related by the equation [latex]{c}^{2}={a}^{2}-{b}^{2}[/latex]. We can use this relationship along with the midpoint and distance formulas to find the equation of the ellipse in standard form when the vertices and foci are given.

### How To: Given the vertices and foci of an ellipse not centered at the origin, write its equation in standard form.

- Determine whether the major axis is parallel to the
*x*– or*y*-axis.- If the
*y*-coordinates of the given vertices and foci are the same, then the major axis is parallel to the*x*-axis. Use the standard form [latex]\frac{{\left(x-h\right)}^{2}}{{a}^{2}}+\frac{{\left(y-k\right)}^{2}}{{b}^{2}}=1[/latex]. - If the
*x*-coordinates of the given vertices and foci are the same, then the major axis is parallel to the*y*-axis. Use the standard form [latex]\frac{{\left(x-h\right)}^{2}}{{b}^{2}}+\frac{{\left(y-k\right)}^{2}}{{a}^{2}}=1[/latex].

- If the
- Identify the center of the ellipse [latex]\left(h,k\right)[/latex] using the midpoint formula and the given coordinates for the vertices.
- Find [latex]{a}^{2}[/latex] by solving for the length of the major axis, [latex]2a[/latex], which is the distance between the given vertices.
- Find [latex]{c}^{2}[/latex] using [latex]h[/latex] and [latex]k[/latex], found in Step 2, along with the given coordinates for the foci.
- Solve for [latex]{b}^{2}[/latex] using the equation [latex]{c}^{2}={a}^{2}-{b}^{2}[/latex].
- Substitute the values for [latex]h,k,{a}^{2}[/latex], and [latex]{b}^{2}[/latex] into the standard form of the equation determined in Step 1.

### Example 2: Writing the Equation of an Ellipse Centered at a Point Other Than the Origin

What is the standard form equation of the ellipse that has vertices [latex]\left(-2,-8\right)[/latex] and [latex]\left(-2,\text{2}\right)[/latex] and foci [latex]\left(-2,-7\right)[/latex] and [latex]\left(-2,\text{1}\right)?[/latex]

### Solution

The *x*-coordinates of the vertices and foci are the same, so the major axis is parallel to the *y*-axis. Thus, the equation of the ellipse will have the form

First, we identify the center, [latex]\left(h,k\right)[/latex]. The center is halfway between the vertices, [latex]\left(-2,-8\right)[/latex] and [latex]\left(-2,\text{2}\right)[/latex]. Applying the midpoint formula, we have:

Next, we find [latex]{a}^{2}[/latex]. The length of the major axis, [latex]2a[/latex], is bounded by the vertices. We solve for [latex]a[/latex] by finding the distance between the *y*-coordinates of the vertices.

So [latex]{a}^{2}=25[/latex].

Now we find [latex]{c}^{2}[/latex]. The foci are given by [latex]\left(h,k\pm c\right)[/latex]. So, [latex]\left(h,k-c\right)=\left(-2,-7\right)[/latex] and [latex]\left(h,k+c\right)=\left(-2,\text{1}\right)[/latex]. We substitute [latex]k=-3[/latex] using either of these points to solve for [latex]c[/latex].

So [latex]{c}^{2}=16[/latex].

Next, we solve for [latex]{b}^{2}[/latex] using the equation [latex]{c}^{2}={a}^{2}-{b}^{2}[/latex].

Finally, we substitute the values found for [latex]h,k,{a}^{2}[/latex], and [latex]{b}^{2}[/latex] into the standard form equation for an ellipse:

### Try It 2

What is the standard form equation of the ellipse that has vertices [latex]\left(-3,3\right)[/latex] and [latex]\left(5,3\right)[/latex] and foci [latex]\left(1 - 2\sqrt{3},3\right)[/latex] and [latex]\left(1+2\sqrt{3},3\right)?[/latex]