Writing Equations of Rotated Conics in Standard Form

Now that we can find the standard form of a conic when we are given an angle of rotation, we will learn how to transform the equation of a conic given in the form Ax2+Bxy+Cy2+Dx+Ey+F=0Ax2+Bxy+Cy2+Dx+Ey+F=0 into standard form by rotating the axes. To do so, we will rewrite the general form as an equation in the xx and yy coordinate system without the xyxy term, by rotating the axes by a measure of θθ that satisfies

cot(2θ)=ACBcot(2θ)=ACB

We have learned already that any conic may be represented by the second degree equation

Ax2+Bxy+Cy2+Dx+Ey+F=0Ax2+Bxy+Cy2+Dx+Ey+F=0

where A,BA,B, and CC are not all zero. However, if B0B0, then we have an xyxy term that prevents us from rewriting the equation in standard form. To eliminate it, we can rotate the axes by an acute angle θθ where cot(2θ)=ACBcot(2θ)=ACB.

  • If cot(2θ)>0cot(2θ)>0, then 2θ2θ is in the first quadrant, and θθ is between (0,45)(0,45).
  • If cot(2θ)<0cot(2θ)<0, then 2θ2θ is in the second quadrant, and θθ is between (45,90)(45,90).
  • If A=CA=C, then θ=45θ=45.

How To: Given an equation for a conic in the xyxy system, rewrite the equation without the xyxy term in terms of xx and yy, where the xx and yy axes are rotations of the standard axes by θθ degrees.

  1. Find cot(2θ)cot(2θ).
  2. Find sin θsin θ and cos θcos θ.
  3. Substitute sin θsin θ and cos θcos θ into x=xcos θysin θx=xcos θysin θ and y=xsin θ+ycos θy=xsin θ+ycos θ.
  4. Substitute the expression for xx and yy into in the given equation, and then simplify.
  5. Write the equations with xx and yy in the standard form with respect to the rotated axes.

Example 3: Rewriting an Equation with respect to the x′ and y′ axes without the x′y′ Term

Rewrite the equation 8x212xy+17y2=208x212xy+17y2=20 in the xyxy system without an xyxy term.

Solution

First, we find cot(2θ)cot(2θ).

8x212xy+17y2=20A=8,B=12andC=17 cot(2θ)=ACB=81712 cot(2θ)=912=348x212xy+17y2=20A=8,B=12andC=17 cot(2θ)=ACB=81712 cot(2θ)=912=34

Figure 7

cot(2θ)=34=adjacentoppositecot(2θ)=34=adjacentopposite

So the hypotenuse is

32+42=h29+16=h225=h2h=532+42=h29+16=h225=h2h=5

Next, we find sin θsin θ and cos θcos θ.

sin θ=1cos(2θ)2=1352=55352=53512=210=15sin θ=15cos θ=1+cos(2θ)2=1+352=55+352=5+3512=810=45cos θ=25sin θ=1cos(2θ)2=1352=55352=53512=210=15sin θ=15cos θ=1+cos(2θ)2=1+352=55+352=5+3512=810=45cos θ=25

Substitute the values of sin θsin θ and cos θcos θ into x=xcos θysin θx=xcos θysin θ and y=xsin θ+ycos θy=xsin θ+ycos θ.

x=xcos θysin θx=x(25)y(15)x=2xy5x=xcos θysin θx=x(25)y(15)x=2xy5

and

y=xsin θ+ycos θy=x(15)+y(25)y=x+2y5y=xsin θ+ycos θy=x(15)+y(25)y=x+2y5

Substitute the expressions for xx and yy into in the given equation, and then simplify.

 8(2xy5)212(2xy5)(x+2y5)+17(x+2y5)2=20  8((2xy)(2xy)5)12((2xy)(x+2y)5)+17((x+2y)(x+2y)5)=20  8(4x24xy+y2)12(2x2+3xy2y2)+17(x2+4xy+4y2)=10032x232xy+8y224x236xy+24y2+17x2+68xy+68y2=100 25x2+100y2=100  25100x2+100100y2=100100 8(2xy5)212(2xy5)(x+2y5)+17(x+2y5)2=20  8((2xy)(2xy)5)12((2xy)(x+2y)5)+17((x+2y)(x+2y)5)=20  8(4x24xy+y2)12(2x2+3xy2y2)+17(x2+4xy+4y2)=10032x232xy+8y224x236xy+24y2+17x2+68xy+68y2=100 25x2+100y2=100  25100x2+100100y2=100100

Write the equations with xx and yy in the standard form with respect to the new coordinate system.

x24+y21=1x24+y21=1

Figure 8 shows the graph of the ellipse.

Figure 8

Try It 2

Rewrite the 13x263xy+7y2=1613x263xy+7y2=16 in the xyxy system without the xyxy term.

Solution

Example 4: Graphing an Equation That Has No x′y′ Terms

Graph the following equation relative to the xyxy system:

x2+12xy4y2=30x2+12xy4y2=30

Solution

First, we find cot(2θ)cot(2θ).

x2+12xy4y2=20A=1, B=12,and C=4x2+12xy4y2=20A=1, B=12,and C=4
cot(2θ)=ACBcot(2θ)=1(4)12cot(2θ)=512cot(2θ)=ACBcot(2θ)=1(4)12cot(2θ)=512

Because cot(2θ)=512, we can draw a reference triangle as in Figure 9.

Figure 9

cot(2θ)=512=adjacentopposite

Thus, the hypotenuse is

52+122=h225+144=h2169=h2h=13

Next, we find sin θ and cos θ. We will use half-angle identities.

sin θ=1cos(2θ)2=15132=13135132=81312=213cos θ=1+cos(2θ)2=1+5132=1313+5132=181312=313

Now we find x and y.\hspace{0.17em}

x=xcos θysin θx=x(313)y(213)x=3x2y13

and

y=xsin θ+ycos θy=x(213)+y(313)y=2x+3y13

Now we substitute x=3x2y13 and y=2x+3y13 into x2+12xy4y2=30.

 (3x2y13)2+12(3x2y13)(2x+3y13)4(2x+3y13)2=30 (113)[(3x2y)2+12(3x2y)(2x+3y)4(2x+3y)2]=30Factor.(113)[9x212xy+4y2+12(6x2+5xy6y2)4(4x2+12xy+9y2)]=30Multiply. (113)[9x212xy+4y2+72x2+60xy72y216x248xy36y2]=30Distribute.  (113)[65x2104y2]=30Combine like terms. 65x2104y2=390Multiply.  x264y215=1Divide by 390.

Figure 10 shows the graph of the hyperbola x264y215=1. 

Figure 10