Learning Objectives
- Verify that multiplying a matrix by it’s inverse results in 1
- Use matrix multiplication to find the inverse of a matrix
- Finding an inverse by augmenting with an identity matrix
We know that the multiplicative inverse of a real number aa is a−1a−1, and aa−1=a−1a=(1a)a=1aa−1=a−1a=(1a)a=1. For example, 2−1=122−1=12 and (12)2=1(12)2=1. The multiplicative inverse of a matrix is similar in concept, except that the product of matrix AA and its inverse A−1A−1 equals the identity matrix. The identity matrix is a square matrix containing ones down the main diagonal and zeros everywhere else. We identify identity matrices by InIn where nn represents the dimension of the matrix. The equations below are the identity matrices for a 2×22×2 matrix and a 3×33×3 matrix, respectively.
I2=[1001]I2=[1001]
I3=[100010001]I3=⎡⎢⎣100010001⎤⎥⎦
The identity matrix acts as a 1 in matrix algebra. For example, AI=IA=AAI=IA=A.
A matrix that has a multiplicative inverse has the properties
AA−1=IA−1A=IAA−1=IA−1A=I
A matrix that has a multiplicative inverse is called an invertible matrix. Only a square matrix may have a multiplicative inverse, as the reversibility, AA−1=A−1A=IAA−1=A−1A=I, is a requirement. Not all square matrices have an inverse, but if AA is invertible, then A−1A−1 is unique. We will look at two methods for finding the inverse of a 2×22×2 matrix and a third method that can be used on both 2×22×2 and 3×33×3 matrices.
A General Note: The Identity Matrix and Multiplicative Inverse
The identity matrix, InIn, is a square matrix containing ones down the main diagonal and zeros everywhere else.
I2=[1001]I3=[100010001] 2×2 3×3I2=[1001]I3=⎡⎢⎣100010001⎤⎥⎦ 2×2 3×3
If AA is an n×nn×n matrix and BB is an n×nn×n matrix such that AB=BA=InAB=BA=In, then B=A−1B=A−1, the multiplicative inverse of a matrix AA.
Example: Showing That the Identity Matrix Acts as a 1
Given matrix A, show that AI=IA=AAI=IA=A.
A=[34−25]A=[34−25]
How To: Given two matrices, show that one is the multiplicative inverse of the other.
- Given matrix AA of order n×nn×n and matrix BB of order n×nn×n multiply ABAB.
- If AB=IAB=I, then find the product BABA. If BA=IBA=I, then B=A−1B=A−1 and A=B−1A=B−1.
Example: Showing That Matrix A Is the Multiplicative Inverse of Matrix B
Show that the given matrices are multiplicative inverses of each other.
A=[15−2−9],B=[−9−521]A=[15−2−9],B=[−9−521]
Try It
Show that the following two matrices are inverses of each other.
A=[14−1−3],B=[−3−411]A=[14−1−3],B=[−3−411]
Finding the Multiplicative Inverse Using Matrix Multiplication
We can now determine whether two matrices are inverses, but how would we find the inverse of a given matrix? Since we know that the product of a matrix and its inverse is the identity matrix, we can find the inverse of a matrix by setting up an equation using matrix multiplication.
Example: Finding the Multiplicative Inverse Using Matrix Multiplication
Use matrix multiplication to find the inverse of the given matrix.
A=[1−22−3]A=[1−22−3]
Finding the Multiplicative Inverse by Augmenting with the Identity
Another way to find the multiplicative inverse is by augmenting with the identity. When matrix AA is transformed into II, the augmented matrix II transforms into A−1A−1.
For example, given
A=[2153]A=[2153]
augment AA with the identity
[2153 | 1001][2153 | 1001]
Perform row operations with the goal of turning AA into the identity.
- Switch row 1 and row 2.
[5321 | 0110][5321 | 0110] - Multiply row 2 by −2−2 and add to row 1.
[1121 | −2110][1121 | −2110] - Multiply row 1 by −2−2 and add to row 2.
[110−1 | −215−2][110−1 | −215−2] - Add row 2 to row 1.
[100−1 | 3−15−2][100−1 | 3−15−2] - Multiply row 2 by −1−1.
[1001 | 3−1−52][1001 | 3−1−52]
The matrix we have found is A−1A−1.
A−1=[3−1−52]A−1=[3−1−52]
Finding the Multiplicative Inverse of 2×2 Matrices Using a Formula
When we need to find the multiplicative inverse of a 2×22×2 matrix, we can use a special formula instead of using matrix multiplication or augmenting with the identity.
If AA is a 2×22×2 matrix, such as
A=[abcd]A=[abcd]
the multiplicative inverse of AA is given by the formula
A−1=1ad−bc[d−b−ca]A−1=1ad−bc[d−b−ca]
where ad−bc≠0ad−bc≠0. If ad−bc=0ad−bc=0, then AA has no inverse.
Example: Using the Formula to Find the Multiplicative Inverse of Matrix A
Use the formula to find the multiplicative inverse of
A=[1−22−3]A=[1−22−3]
Try It
Use the formula to find the inverse of matrix AA. Verify your answer by augmenting with the identity matrix.
A=[1−123]A=[1−123]
Example: Finding the Inverse of the Matrix, If It Exists
Find the inverse, if it exists, of the given matrix.
A=[3612]A=[3612]
Finding the Multiplicative Inverse of 3×3 Matrices
Unfortunately, we do not have a formula similar to the one for a 2×22×2 matrix to find the inverse of a 3×33×3 matrix. Instead, we will augment the original matrix with the identity matrix and use row operations to obtain the inverse.
Given a 3×33×3 matrix
A=[231331241]A=⎡⎢⎣231331241⎤⎥⎦
augment AA with the identity matrix
A|I=[231331241 | 100010001]A|I=⎡⎢⎣231331241 | 100010001⎤⎥⎦
To begin, we write the augmented matrix with the identity on the right and AA on the left. Performing elementary row operations so that the identity matrix appears on the left, we will obtain the inverse matrix on the right. We will find the inverse of this matrix in the next example.
How To: Given a 3×33×3 matrix, find the inverse
- Write the original matrix augmented with the identity matrix on the right.
- Use elementary row operations so that the identity appears on the left.
- What is obtained on the right is the inverse of the original matrix.
- Use matrix multiplication to show that AA−1=IAA−1=I and A−1A=IA−1A=I.
Example: Finding the Inverse of a 3 × 3 Matrix
Given the 3×33×3 matrix AA, find the inverse.
A=[231331241]A=⎡⎢⎣231331241⎤⎥⎦
Try It
Find the inverse of the 3×33×3 matrix.
A=[2−1711−111−703−2]A=⎡⎢⎣2−1711−111−703−2⎤⎥⎦
Candela Citations
- Revision and Adaptation. Provided by: Lumen Learning. License: CC BY: Attribution
- College Algebra. Authored by: Abramson, Jay et al.. Provided by: OpenStax. Located at: http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@5.2. License: CC BY: Attribution. License Terms: Download for free at http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@5.2
- Question ID 6363. Authored by: Lippman,David, mb Sousa,James. License: CC BY: Attribution. License Terms: IMathAS Community License (GPL + CC-BY)
- Question ID 127903. Authored by: Day, Alyson. License: CC BY: Attribution. License Terms: IMathAS Community License CC-BY + GPL
- Precalculus. Authored by: OpenStax College. Provided by: OpenStax. Located at: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175:1/Preface. License: CC BY: Attribution