Choosing Appropriate Models

Learning Outcomes

  • Choose an appropriate model for data.
  • Use a graphing utility to create an exponential regression from a set of data.

Choosing an Appropriate Model

Now that we have discussed various mathematical models, we need to learn how to choose the appropriate model for the raw data we have. Many factors influence the choice of a mathematical model among which are experience, scientific laws, and patterns in the data itself. Not all data can be described by elementary functions. Sometimes a function is chosen that approximates the data over a given interval. For instance, suppose data were gathered on the number of homes bought in the United States from the years 1960 to 2013. After plotting these data in a scatter plot, we notice that the shape of the data from the years 2000 to 2013 follow a logarithmic curve. We could restrict the interval from 2000 to 2010, apply regression analysis using a logarithmic model, and use it to predict the number of home buyers for the year 2015.

Three kinds of functions that are often useful in mathematical models are linear functions, exponential functions, and logarithmic functions. If the data lies on a straight line or seems to lie approximately along a straight line, a linear model may be best. If the data is non-linear, we often consider an exponential or logarithmic model although other models, such as quadratic models, may also be considered.

In choosing between an exponential model and a logarithmic model, we look at the way the data curves. This is called the concavity. If we draw a line between two data points, and all (or most) of the data between those two points lies above that line, we say the curve is concave down. We can think of it as a bowl that bends downward and therefore cannot hold water. If all (or most) of the data between those two points lies below the line, we say the curve is concave up. In this case, we can think of a bowl that bends upward and can therefore hold water. An exponential curve, whether rising or falling, whether representing growth or decay, is always concave up away from its horizontal asymptote. A logarithmic curve is always concave down away from its vertical asymptote. In the case of positive data, which is the most common case, an exponential curve is always concave up and a logarithmic curve always concave down.

A logistic curve changes concavity. It starts out concave up and then changes to concave down beyond a certain point, called a point of inflection.

After using the graph to help us choose a type of function to use as a model, we substitute points, and solve to find the parameters. We reduce round-off error by choosing points as far apart as possible.

Example: Choosing a Mathematical Model

Does a linear, exponential, logarithmic, or logistic model best fit the values listed below? Find the model, and use a graph to check your choice.

x 1 2 3 4 5 6 7 8 9
y 0 1.386 2.197 2.773 3.219 3.584 3.892 4.159 4.394

Try It

Does a linear, exponential, or logarithmic model best fit the data in the table below? Find the model.

x 1 2 3 4 5 6 7 8 9
y 3.297 5.437 8.963 14.778 24.365 40.172 66.231 109.196 180.034

Expressing an Exponential Model in Base e

While powers and logarithms of any base can be used in modeling, the two most common bases are [latex]10[/latex] and [latex]e[/latex]. In science and mathematics, the base e is often preferred. We can use properties of exponents and properties of logarithms to change any base to base e.

How To: Given a model with the form [latex]y=a{b}^{x}[/latex], change it to the form [latex]y={A}_{0}{e}^{kx}[/latex]

  1. Rewrite [latex]y=a{b}^{x}[/latex] as [latex]y=a{e}^{\mathrm{ln}\left({b}^{x}\right)}[/latex].
  2. Use the power rule of logarithms to rewrite as [latex]y=a{e}^{x\mathrm{ln}\left(b\right)}=a{e}^{\mathrm{ln}\left(b\right)x}[/latex].
  3. Note that [latex]a={A}_{0}[/latex] and [latex]k=\mathrm{ln}\left(b\right)[/latex] in the equation [latex]y={A}_{0}{e}^{kx}[/latex].

Example: Changing to base [latex]e[/latex]

Change the function [latex]y=2.5{\left(3.1\right)}^{x}[/latex] so that this same function is written in the form [latex]y={A}_{0}{e}^{kx}[/latex].

Try It

Change the function [latex]y=3{\left(0.5\right)}^{x}[/latex] to one having e as the base.

Exponential Regression

As we have learned, there are a multitude of situations that can be modeled by exponential functions, such as investment growth, radioactive decay, atmospheric pressure changes, and temperatures of a cooling object. What do these phenomena have in common? For one thing, all the models either increase or decrease as time moves forward. But that’s not the whole story. It’s the way data increase or decrease that helps us determine whether it is best modeled by an exponential function. Knowing the behavior of exponential functions in general allows us to recognize when to use exponential regression, so let’s review exponential growth and decay.

Recall that exponential functions have the form [latex]y=a{b}^{x}[/latex] or [latex]y={A}_{0}{e}^{kx}[/latex]. When performing regression analysis, we use the form most commonly used on graphing utilities, [latex]y=a{b}^{x}[/latex]. Take a moment to reflect on the characteristics we’ve already learned about the exponential function [latex]y=a{b}^{x}[/latex] (assume a > 0):

  • b must be greater than zero and not equal to one.
  • The initial value of the model is a.
    • If > 1, the function models exponential growth. As x increases, the outputs of the model increase slowly at first, but then increase more and more rapidly, without bound.
    • If 0 < < 1, the function models exponential decay. As x increases, the outputs for the model decrease rapidly at first and then level off to become asymptotic to the x-axis. In other words, the outputs never become equal to or less than zero.

As part of the results, your calculator will display a number known as the correlation coefficient, labeled by the variable r or [latex]{r}^{2}[/latex]. (You may have to change the calculator’s settings for these to be shown.) The values are an indication of the “goodness of fit” of the regression equation to the data. We more commonly use the value of [latex]{r}^{2}[/latex] instead of r, but the closer either value is to 1, the better the regression equation approximates the data.

A General Note: Exponential Regression

Exponential regression is used to model situations in which growth begins slowly and then accelerates rapidly without bound, or where decay begins rapidly and then slows down to get closer and closer to zero. We use the command “ExpReg” on a graphing utility to fit an exponential function to a set of data points. This returns an equation of the form [latex]y=a{b}^{x}[/latex].

Note that:

  • b must be non-negative.
  • When > 1, we have an exponential growth model.
  • When 0 < < 1, we have an exponential decay model.

Example: Using Exponential Regression to Fit a Model to Data

In 2007, a university study was published investigating the crash risk of alcohol impaired driving. Data from 2,871 crashes were used to measure the association of a person’s blood alcohol level (BAC) with the risk of being in an accident. The table below shows results from the study.[1] The relative risk is a measure of how many times more likely a person is to crash. So, for example, a person with a BAC of 0.09 is 3.54 times as likely to crash as a person who has not been drinking alcohol.

BAC 0 0.01 0.03 0.05 0.07 0.09
Relative Risk of Crashing 1 1.03 1.06 1.38 2.09 3.54
BAC 0.11 0.13 0.15 0.17 0.19 0.21
Relative Risk of Crashing 6.41 12.6 22.1 39.05 65.32 99.78
  1. Let x represent the BAC level and let represent the corresponding relative risk. Use exponential regression to fit a model to these data.
  2. After 6 drinks, a person weighing 160 pounds will have a BAC of about 0.16. How many times more likely is a person with this weight to crash if they drive after having a 6-pack of beer? Round to the nearest hundredth.

 

Try It

The table below shows a recent graduate’s credit card balance each month after graduation.

Month 1 2 3 4 5 6 7 8
Debt ($) 620.00 761.88 899.80 1039.93 1270.63 1589.04 1851.31 2154.92
  1. Use exponential regression to fit a model to these data.
  2. If spending continues at this rate, what will the graduate’s credit card debt be one year after graduating?

Q & A

Is it reasonable to assume that an exponential regression model will represent a situation indefinitely?

No. Remember that models are formed by real-world data gathered for regression. It is usually reasonable to make estimates within the interval of original observation (interpolation). However, when a model is used to make predictions, it is important to use reasoning skills to determine whether the model makes sense for inputs far beyond the original observation interval (extrapolation).


Key Concepts

  • We can use real-world data gathered over time to observe trends. Knowledge of linear, exponential, logarithmic, and logistic graphs help us to develop models that best fit our data.
  • Exponential regression is used to model situations where growth begins slowly and then accelerates rapidly without bound, or where decay begins rapidly and then slows down to get closer and closer to zero.
  • We use the command “ExpReg” on a graphing utility to fit function of the form [latex]y=a{b}^{x}[/latex] to a set of data points.
  • Exponential regression is used to model situations where growth begins slowly and then accelerates rapidly without bound or where decay begins rapidly and then slows down to get closer and closer to zero.
  • Logarithmic regression is used to model situations where growth or decay accelerates rapidly at first and then slows over time.
  • We use the command “LnReg” on a graphing utility to fit a function of the form [latex]y=a+b\mathrm{ln}\left(x\right)[/latex] to a set of data points.
  • Logistic regression is used to model situations where growth accelerates rapidly at first and then steadily slows as the function approaches an upper limit.
  • We use the command “Logistic” on a graphing utility to fit a function of the form [latex]y=\frac{c}{1+a{e}^{-bx}}[/latex] to a set of data points.

Glossary

carrying capacity
in a logistic model, the limiting value of the output
doubling time
the time it takes for a quantity to double
half-life
the length of time it takes for a substance to exponentially decay to half of its original quantity
logistic growth model
a function of the form [latex]f\left(x\right)=\frac{c}{1+a{e}^{-bx}}[/latex] where [latex]\frac{c}{1+a}[/latex] is the initial value, c is the carrying capacity, or limiting value, and b is a constant determined by the rate of growth

  1. Source: Indiana University Center for Studies of Law in Action, 2007