Learning Outcomes
- Identify power functions.
- Describe end behavior of power functions given its equation or graph.
In this section we will examine functions that are used to estimate and predict things like changes in animal and bird populations or fluctuations in financial markets.
We will also continue to learn how to analyze the behavior of functions by looking at their graphs. We will introduce and describe a new term called end behavior and show which parts of the function equation determine end behavior.
End Behavior of Power Functions
Suppose a certain species of bird thrives on a small island. Its population over the last few years is shown below.
Year | 2009 | 2010 | 2011 | 2012 | 2013 |
Bird Population | 800 | 897 | 992 | 1,083 | 1,169 |
The population can be estimated using the function [latex]P\left(t\right)=-0.3{t}^{3}+97t+800[/latex], where [latex]P\left(t\right)[/latex] represents the bird population on the island t years after 2009. We can use this model to estimate the maximum bird population and when it will occur. We can also use this model to predict when the bird population will disappear from the island.
Identifying Power Functions
In order to better understand the bird problem, we need to understand a specific type of function. A power function is a function with a single term that is the product of a real number and variable raised to a fixed real number power. Keep in mind a number that multiplies a variable raised to an exponent is known as a coefficient.
As an example, consider functions for area or volume. The function for the area of a circle with radius [latex]r[/latex] is:
[latex]A\left(r\right)=\pi {r}^{2}[/latex]
and the function for the volume of a sphere with radius r is:
[latex]V\left(r\right)=\frac{4}{3}\pi {r}^{3}[/latex]
Both of these are examples of power functions because they consist of a coefficient, [latex]\pi[/latex] or [latex]\frac{4}{3}\pi[/latex], multiplied by a variable r raised to a power.
A General Note: Power FunctionS
A power function is a function that can be represented in the form
[latex]f\left(x\right)=a{x}^{n}[/latex]
where a and n are real numbers and a is known as the coefficient.
Q & A
Is [latex]f\left(x\right)={2}^{x}[/latex] a power function?
No. A power function contains a variable base raised to a fixed power. This function has a constant base raised to a variable power. This is called an exponential function, not a power function. You will learn about exponential functions in Unit 4.
Example: Identifying Power Functions
Which of the following functions are power functions?
[latex]\begin{array}{c}f\left(x\right)=1\hfill & \text{Constant function}\hfill \\ f\left(x\right)=x\hfill & \text{Identify function}\hfill \\ f\left(x\right)={x}^{2}\hfill & \text{Quadratic}\text{ }\text{ function}\hfill \\ f\left(x\right)={x}^{3}\hfill & \text{Cubic function}\hfill \\ f\left(x\right)=\frac{1}{x} \hfill & \text{Reciprocal function}\hfill \\ f\left(x\right)=\frac{1}{{x}^{2}}\hfill & \text{Reciprocal squared function}\hfill \\ f\left(x\right)=\sqrt{x}\hfill & \text{Square root function}\hfill \\ f\left(x\right)=\sqrt[3]{x}\hfill & \text{Cube root function}\hfill \end{array}[/latex]
Try It
Which functions are power functions?
[latex]\begin{array}{c}f\left(x\right)=2{x}^{2}\cdot 4{x}^{3}\hfill \\ g\left(x\right)=-{x}^{5}+5{x}^{3}-4x\hfill \\ h\left(x\right)=\frac{2{x}^{5}-1}{3{x}^{2}+4}\hfill \end{array}[/latex]
Identifying End Behavior of Power Functions
The graph below shows the graphs of [latex]f\left(x\right)={x}^{2},g\left(x\right)={x}^{4}[/latex], [latex]h\left(x\right)={x}^{6}[/latex], [latex]k(x)=x^{8}[/latex], and [latex]p(x)=x^{10}[/latex] which are all power functions with even, whole-number powers. Notice that these graphs have similar shapes, very much like that of the quadratic function. However, as the power increases, the graphs flatten somewhat near the origin and become steeper away from the origin.
To describe the behavior as numbers become larger and larger, we use the idea of infinity. We use the symbol [latex]\infty[/latex] for positive infinity and [latex]-\infty[/latex] for negative infinity. When we say that “x approaches infinity,” which can be symbolically written as [latex]x\to \infty[/latex], we are describing a behavior; we are saying that x is increasing without bound.
With even-powered power functions, as the input increases or decreases without bound, the output values become very large, positive numbers. Equivalently, we could describe this behavior by saying that as [latex]x[/latex] approaches positive or negative infinity, the [latex]f\left(x\right)[/latex] values increase without bound. In symbolic form, we could write
[latex]\text{as }x\to \pm \infty , f\left(x\right)\to \infty[/latex]
The graph below shows [latex]f\left(x\right)={x}^{3},g\left(x\right)={x}^{5},h\left(x\right)={x}^{7},k\left(x\right)={x}^{9},\text{and }p\left(x\right)={x}^{11}[/latex], which are all power functions with odd, whole-number powers. Notice that these graphs look similar to the cubic function. As the power increases, the graphs flatten near the origin and become steeper away from the origin.
These examples illustrate that functions of the form [latex]f\left(x\right)={x}^{n}[/latex] reveal symmetry of one kind or another. First, in the even-powered power functions, we see that even functions of the form [latex]f\left(x\right)={x}^{n}\text{, }n\text{ even,}[/latex] are symmetric about the y-axis. In the odd-powered power functions, we see that odd functions of the form [latex]f\left(x\right)={x}^{n}\text{, }n\text{ odd,}[/latex] are symmetric about the origin.
For these odd power functions, as x approaches negative infinity, [latex]f\left(x\right)[/latex] decreases without bound. As x approaches positive infinity, [latex]f\left(x\right)[/latex] increases without bound. In symbolic form we write
[latex]\begin{array}{c}\text{as } x\to -\infty , f\left(x\right)\to -\infty \\ \text{as } x\to \infty , f\left(x\right)\to \infty \end{array}[/latex]
The behavior of the graph of a function as the input values get very small ( [latex]x\to -\infty[/latex] ) and get very large ( [latex]x\to \infty[/latex] ) is referred to as the end behavior of the function. We can use words or symbols to describe end behavior.
The table below shows the end behavior of power functions of the form [latex]f\left(x\right)=a{x}^{n}[/latex] where [latex]n[/latex] is a non-negative integer depending on the power and the coefficient, a.
Even Power | Odd Power | |
---|---|---|
Positive Coefficient
a > 0 |
||
Negative Coefficient
a < 0 |
How To: Given a power function [latex]f\left(x\right)=a{x}^{n}[/latex] where [latex]n[/latex] is a non-negative integer, identify the end behavior.
- Determine whether the power is even or odd.
- Determine whether the coefficient in front is positive or negative.
- Use the above graphs to identify the end behavior.
Example: Identifying the End Behavior of a Power Function
Describe the end behavior of the graph of [latex]f\left(x\right)={x}^{8}[/latex].
Example: Identifying the End Behavior of a Power Function
Describe the end behavior of the graph of [latex]f\left(x\right)=-{x}^{9}[/latex].
Try It
Describe in words and symbols the end behavior of [latex]f\left(x\right)=-5{x}^{4}[/latex].
Key Equations
General form of a power function | [latex]f\left(x\right)={a}_{n}{x}^{n}[/latex] |
Key Concepts
- A power function is a variable base raised to a number power.
- The behavior of a graph as the input decreases beyond bound and increases beyond bound is called the end behavior.
- The end behavior depends on whether the power is even or odd.
Glossary
- coefficient
- a nonzero real number multiplied by a variable raised to an exponent
- end behavior
- the behavior of the graph of a function as the input decreases without bound and increases without bound
- leading coefficient
- the coefficient of the leading term
- power function
- a function that can be represented in the form [latex]f\left(x\right)=a{x}^{n}[/latex] where a is a coefficient, the base is a variable, and the exponent is n, is a smooth curve represented by a graph with no sharp corners
Candela Citations
- Revision and Adaptation. Provided by: Lumen Learning. License: CC BY: Attribution
- Degree, Leading Term, and Leading Coefficient of a Polynomial Function . Authored by: James Sousa (Mathispower4u.com) for Lumen Learning. Located at: https://youtu.be/F_G_w82s0QA. License: CC BY: Attribution
- College Algebra. Authored by: Abramson, Jay et al.. Provided by: OpenStax. Located at: http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@5.2. License: CC BY: Attribution. License Terms: Download for free at http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@5.2
- Question ID 69337. Authored by: Roy Shahbazian. License: CC BY: Attribution. License Terms: IMathAS Community License CC-BY + GPL
- Question ID 15940, 15937. Authored by: James Sousa. License: CC BY: Attribution. License Terms: IMathAS Community License CC-BY + GPL
- Ex: End Behavior or Long Run Behavior of Functions.. Authored by: James Sousa (Mathispower4u.com) . Located at: https://youtu.be/Krjd_vU4Uvg. License: CC BY: Attribution
- Question ID 48358. Authored by: Wicks, Edward. License: CC BY: Attribution. License Terms: IMathAS Community License CC-BY + GPL
- Question ID 121444, 123739. Provided by: Lumen Learning. License: CC BY: Attribution. License Terms: IMathAS Community License CC-BY + GPL
- Summary of End Behavior or Long Run Behavior of Polynomial Functions . Authored by: James Sousa (Mathispower4u.com). Located at: https://youtu.be/y78Dpr9LLN0. License: CC BY: Attribution
- Turning Points and X-Intercepts of a Polynomial Function. Authored by: Sousa, James (Mathispower4u). Located at: https://youtu.be/9WW0EetLD4Q. License: CC BY: Attribution