Key Equations
general form of a quadratic function | |
standard form of a quadratic function |
Vertex of a parabola (h,k) |
The Quadratic Formula |
Key Concepts
- The zeros, or -intercepts, are the points at which the parabola crosses the -axis. The -intercept is the point at which the parabola crosses the –axis.
- The vertex can be found from an equation representing a quadratic function.
- A quadratic function’s minimum or maximum value is given by the -value of the vertex.
- The minimum or maximum value of a quadratic function can be used to determine the range of the function and to solve many kinds of real-world problems, including problems involving area and revenue.
- Some quadratic equations must be solved by using the quadratic formula.
- The vertex and the intercepts can be identified and interpreted to solve real-world problems.
Glossary
- vertex
- the point at which a parabola changes direction, corresponding to the minimum or maximum value of the quadratic function
- vertex form of a quadratic function
- another name for the standard form of a quadratic function
- zeros
- in a given function, the values of at which , also called roots
Candela Citations
CC licensed content, Original
- Revision and Adaptation. Provided by: Lumen Learning. License: CC BY: Attribution
CC licensed content, Shared previously
- College Algebra. Authored by: Abramson, Jay et al.. Provided by: OpenStax. Located at: http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@5.2. License: CC BY: Attribution. License Terms: Download for free at http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@5.2