Learning Outcomes
- Use the properties of exponents to simplify products and quotients that contain negative exponents and variables
All the exponent properties we developed earlier in this chapter with whole number exponents apply to integer exponents, too. We restate them here for reference.
Summary of Exponent Properties
If [latex]a,b[/latex] are real numbers and [latex]m,n[/latex] are integers, then
[latex]\begin{array}{cccc}\mathbf{\text{Product Property}}\hfill & & & {a}^{m}\cdot {a}^{n}={a}^{m+n}\hfill \\ \mathbf{\text{Power Property}}\hfill & & & {\left({a}^{m}\right)}^{n}={a}^{m\cdot n}\hfill \\ \mathbf{\text{Product to a Power Property}}\hfill & & & {\left(ab\right)}^{m}={a}^{m}{b}^{m}\hfill \\ \mathbf{\text{Quotient Property}}\hfill & & & {\Large\frac{{a}^{m}}{{a}^{n}}}={a}^{m-n},a\ne 0\hfill \\ \mathbf{\text{Zero Exponent Property}}\hfill & & & {a}^{0}=1,a\ne 0\hfill \\ \mathbf{\text{Quotient to a Power Property}}\hfill & & & {\left({\Large\frac{a}{b}}\right)}^{m}={\Large\frac{{a}^{m}}{{b}^{m}}},b\ne 0\hfill \\ \mathbf{\text{Definition of Negative Exponent}}\hfill & & & {a}^{-n}={\Large\frac{1}{{a}^{n}}}\hfill \end{array}[/latex]
example
Simplify:
1. [latex]{x}^{-4}\cdot {x}^{6}[/latex]
2. [latex]{y}^{-6}\cdot {y}^{4}[/latex]
3. [latex]{z}^{-5}\cdot {z}^{-3}[/latex]
Solution
1. | |
[latex]{x}^{-4}\cdot {x}^{6}[/latex] | |
Use the Product Property, [latex]{a}^{m}\cdot {a}^{n}={a}^{m+n}[/latex]. | [latex]{x}^{-4+6}[/latex] |
Simplify. | [latex]{x}^{2}[/latex] |
2. | |
[latex]{y}^{-6}\cdot {y}^{4}[/latex] | |
The bases are the same, so add the exponents. | [latex]{y}^{-6+4}[/latex] |
Simplify. | [latex]{y}^{-2}[/latex] |
Use the definition of a negative exponent, [latex]{a}^{-n}={\Large\frac{1}{{a}^{n}}}[/latex]. | [latex]{\Large\frac{1}{{y}^{2}}}[/latex] |
3. | |
[latex]{z}^{-5}\cdot {z}^{-3}[/latex] | |
The bases are the same, so add the exponents. | [latex]{z}^{-5 - 3}[/latex] |
Simplify. | [latex]{z}^{-8}[/latex] |
Use the definition of a negative exponent, [latex]{a}^{-n}={\Large\frac{1}{{a}^{n}}}[/latex]. | [latex]{\Large\frac{1}{{z}^{8}}}[/latex] |
try it
In the next two examples, we’ll start by using the Commutative Property to group the same variables together. This makes it easier to identify the like bases before using the Product Property of Exponents.
example
Simplify: [latex]\left({m}^{4}{n}^{-3}\right)\left({m}^{-5}{n}^{-2}\right)[/latex]
try it
If the monomials have numerical coefficients, we multiply the coefficients, just as we did in Integer Exponents and Scientific Notation.
example
Simplify: [latex]\left(2{x}^{-6}{y}^{8}\right)\left(-5{x}^{5}{y}^{-3}\right)[/latex]
try it
In the next two examples, we’ll use the Power Property and the Product to a Power Property.
example
Simplify: [latex]{\left({k}^{3}\right)}^{-2}[/latex].
try it
example
Simplify: [latex]{\left(5{x}^{-3}\right)}^{2}[/latex]
try it
In the following video we show another example of how to simplify a product that contains negative exponents.
To simplify a fraction, we use the Quotient Property.
example
Simplify: [latex]{\Large\frac{{r}^{5}}{{r}^{-4}}}[/latex].
try it
In the next video we share more examples of simplifying a quotient with negative exponents.