Learning Outcomes
- Determine whether a given number is divisible by 2, 3, 5, or 10
Annie is counting the shoes in her closet. The shoes are matched in pairs, so she doesn’t have to count each one. She counts by twos: . She has shoes in her closet.
The numbers are called multiples of . Multiples of can be written as the product of a counting number and . The first six multiples of are given below.
A multiple of a number is the product of the number and a counting number. So a multiple of would be the product of a counting number and . Below are the first six multiples of .
We can find the multiples of any number by continuing this process. The table below shows the multiples of through for the first twelve counting numbers.
Counting Number | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Multiple of a Number
A number is a multiple of if it is the product of a counting number and .
Recognizing the patterns for multiples of will be helpful to you as you continue in this course.
Doing the Manipulative Mathematics activity “Multiples” will help you develop a better understanding of multiples.
The table below shows the counting numbers from to . Multiples of are highlighted. Do you notice a pattern?
Multiples of between and
The last digit of each highlighted number in the table is either . This is true for the product of and any counting number. So, to tell if any number is a multiple of look at the last digit. If it is , then the number is a multiple of .
example
Determine whether each of the following is a multiple of
Solution:
1. | |
Is a multiple of ? | |
Is the last digit ? | No. |
is not a multiple of . |
2. | |
Is a multiple of ? | |
Is the last digit ? | Yes. |
is a multiple of . |
try it
Now let’s look at multiples of . The table below highlights all of the multiples of between and . What do you notice about the multiples of
Multiples of between and
All multiples of end with either or . Just like we identify multiples of by looking at the last digit, we can identify multiples of by looking at the last digit.
example
Determine whether each of the following is a multiple of
try it
The table below highlights the multiples of between and . All multiples of all end with a zero.
Multiples of between and
example
Determine whether each of the following is a multiple of
try it
The table below highlights multiples of . The pattern for multiples of is not as obvious as the patterns for multiples of .
Multiples of between and
Unlike the other patterns we’ve examined so far, this pattern does not involve the last digit. The pattern for multiples of is based on the sum of the digits. If the sum of the digits of a number is a multiple of , then the number itself is a multiple of . See the example below.
Consider the number . The digits are and , and their sum is . Since is a multiple of , we know that is also a multiple of .
example
Determine whether each of the given numbers is a multiple of
try it
Look back at the charts where you highlighted the multiples of , of , and of . Notice that the multiples of are the numbers that are multiples of both and . That is because . Likewise, since , the multiples of are the numbers that are multiples of both and .
The following video shows how to determine the first four multiples of 6.
Use Common Divisibility Tests
Another way to say that is a multiple of is to say that is divisible by . In fact, is , so is . Notice in the last example that is not a multiple . When we divided by we did not get a counting number, so is not divisible by .
Divisibility
If a number is a multiple of , then we say that is divisible by .
Since multiplication and division are inverse operations, the patterns of multiples that we found can be used as divisibility tests. The table below summarizes divisibility tests for some of the counting numbers between one and ten.
Divisibility Tests | |
---|---|
A number is divisible by | |
if the last digit is | |
if the sum of the digits is divisible by | |
if the last digit is or | |
if divisible by both and | |
if the last digit is |
example
Determine whether is divisible by .
try it
example
Determine whether is divisible by .
try it
The following video lesson shows how to determine whether a number is divisible by
Candela Citations
- Question ID 145433, 145363, 145413, 145417, 145418. Authored by: Lumen Learnig. License: CC BY: Attribution. License Terms: IMathAS Community License
- Determine Multiples of a Given Number. Authored by: James Sousa (Mathispower4u.com). Located at: https://youtu.be/mkEWqspRVKk. License: CC BY: Attribution
- Divisibility Rules. Authored by: James Sousa (Mathispower4u.com). Located at: https://youtu.be/i16N01IdIhk. License: CC BY: Attribution
- Prealgebra. Provided by: OpenStax. License: CC BY: Attribution. License Terms: Download for free at http://cnx.org/contents/caa57dab-41c7-455e-bd6f-f443cda5519c@9.757