1. About 13 dolphins.
3. $1,947
5. y-intercept: (0, 5)
7. [latex]{8.5}^{a}=614.125[/latex]
9. [latex]x={\left(\frac{1}{7}\right)}^{2}=\frac{1}{49}[/latex]
11. [latex]\mathrm{ln}\left(0.716\right)\approx -0.334[/latex]
13. Domain: x < 3; Vertical asymptote: x = 3; End behavior: [latex]x\to {3}^{-},f\left(x\right)\to -\infty [/latex] and [latex]x\to -\infty ,f\left(x\right)\to \infty [/latex]
15. [latex]{\mathrm{log}}_{t}\left(12\right)[/latex]
17. [latex]3\mathrm{ln}\left(y\right)+2\mathrm{ln}\left(z\right)+\frac{\mathrm{ln}\left(x - 4\right)}{3}[/latex]
19. [latex]x=\frac{\frac{\mathrm{ln}\left(1000\right)}{\mathrm{ln}\left(16\right)}+5}{3}\approx 2.497[/latex]
21. [latex]a=\frac{\mathrm{ln}\left(4\right)+8}{10}[/latex]
23. no solution
25. [latex]x=\mathrm{ln}\left(9\right)[/latex]
27. [latex]x=\pm \frac{3\sqrt{3}}{2}[/latex]
29. [latex]f\left(t\right)=112{e}^{-.019792t}[/latex]; half-life: about 35 days
31. [latex]T\left(t\right)=36{e}^{-0.025131t}+35;T\left(60\right)\approx {43}^{\text{o}}\text{F}[/latex]
33. logarithmic
35. exponential; [latex]y=15.10062{\left(1.24621\right)}^{x}[/latex]
37. logistic; [latex]y=\frac{18.41659}{1+7.54644{e}^{-0.68375x}}[/latex]