The fourth method of solving a quadratic equation is by using the quadratic formula, a formula that will solve all quadratic equations. Although the quadratic formula works on any quadratic equation in standard form, it is easy to make errors in substituting the values into the formula. Pay close attention when substituting, and use parentheses when inserting a negative number.
We can derive the quadratic formula by completing the square. We will assume that the leading coefficient is positive; if it is negative, we can multiply the equation by [latex]-1[/latex] and obtain a positive a. Given [latex]a{x}^{2}+bx+c=0[/latex], [latex]a\ne 0[/latex], we will complete the square as follows:
- First, move the constant term to the right side of the equal sign:
[latex]a{x}^{2}+bx=-c[/latex]
- As we want the leading coefficient to equal 1, divide through by a:
[latex]{x}^{2}+\frac{b}{a}x=-\frac{c}{a}[/latex]
- Then, find [latex]\frac{1}{2}[/latex] of the middle term, and add [latex]{\left(\frac{1}{2}\frac{b}{a}\right)}^{2}=\frac{{b}^{2}}{4{a}^{2}}[/latex] to both sides of the equal sign:
[latex]{x}^{2}+\frac{b}{a}x+\frac{{b}^{2}}{4{a}^{2}}=\frac{{b}^{2}}{4{a}^{2}}-\frac{c}{a}[/latex]
- Next, write the left side as a perfect square. Find the common denominator of the right side and write it as a single fraction:
[latex]{\left(x+\frac{b}{2a}\right)}^{2}=\frac{{b}^{2}-4ac}{4{a}^{2}}[/latex]
- Now, use the square root property, which gives
[latex]\begin{array}{l}x+\frac{b}{2a}=\pm \sqrt{\frac{{b}^{2}-4ac}{4{a}^{2}}}\hfill \\ x+\frac{b}{2a}=\frac{\pm \sqrt{{b}^{2}-4ac}}{2a}\hfill \end{array}[/latex]
- Finally, add [latex]-\frac{b}{2a}[/latex] to both sides of the equation and combine the terms on the right side. Thus,
[latex]x=\frac{-b\pm \sqrt{{b}^{2}-4ac}}{2a}[/latex]
A General Note: The Quadratic Formula
Written in standard form, [latex]a{x}^{2}+bx+c=0[/latex], any quadratic equation can be solved using the quadratic formula:
where a, b, and c are real numbers and [latex]a\ne 0[/latex].
How To: Given a quadratic equation, solve it using the quadratic formula
- Make sure the equation is in standard form: [latex]a{x}^{2}+bx+c=0[/latex].
- Make note of the values of the coefficients and constant term, [latex]a,b[/latex], and [latex]c[/latex].
- Carefully substitute the values noted in step 2 into the equation. To avoid needless errors, use parentheses around each number input into the formula.
- Calculate and solve.
Example 9: Solve the Quadratic Equation Using the Quadratic Formula
Solve the quadratic equation: [latex]{x}^{2}+5x+1=0[/latex].
Solution
Identify the coefficients: [latex]a=1,b=5,c=1[/latex]. Then use the quadratic formula.
The solution of the quadratic equation in the previous example is a real number that contains the square root of 21. What if we solve an equation whose solution contains the square root of a negative number? In that case, the solution would not be a real number, since the square of every real number is a positive number. In fact, the solution would be a complex number with an imaginary part.
The following example and Try It exercise assume you are familiar with complex numbers. If you need to review complex numbers beforehand, study the Complex Numbers section included below.
Example 10: Solving a Quadratic Equation with the Quadratic Formula
Use the quadratic formula to solve [latex]{x}^{2}+x+2=0[/latex].
Solution
First, we identify the coefficients: [latex]a=1,b=1[/latex], and [latex]c=2[/latex].
Substitute these values into the quadratic formula.
The solutions to the equation are [latex]x=\frac{-1+i\sqrt{7}}{2}[/latex] and [latex]x=\frac{-1-i\sqrt{7}}{2}[/latex] or [latex]x=\frac{-1}{2}+\frac{i\sqrt{7}}{2}[/latex] and [latex]x=\frac{-1}{2}-\frac{i\sqrt{7}}{2}[/latex].
Try It 8
Solve the quadratic equation using the quadratic formula: [latex]9{x}^{2}+3x - 2=0[/latex].
Complex Numbers
We know how to find the square root of any positive real number. In a similar way, we can find the square root of a negative number. The difference is that the root is not real. If the value in the radicand is negative, the root is said to be an imaginary number. The imaginary number [latex]i[/latex] is defined as the square root of negative 1.
So, using properties of radicals,
We can write the square root of any negative number as a multiple of i. Consider the square root of –25.
We use 5i and not [latex]-\text{5}i[/latex] because the principal root of 25 is the positive root.
A complex number is the sum of a real number and an imaginary number. A complex number is expressed in standard form when written a + bi where a is the real part and bi is the imaginary part. For example, [latex]5+2i[/latex] is a complex number. So, too, is [latex]3+4\sqrt{3}i[/latex].
Imaginary numbers are distinguished from real numbers because a squared imaginary number produces a negative real number. Recall, when a positive real number is squared, the result is a positive real number and when a negative real number is squared, again, the result is a positive real number. Complex numbers are a combination of real and imaginary numbers.
A General Note: Imaginary and Complex Numbers
A complex number is a number of the form [latex]a+bi\\[/latex] where
- a is the real part of the complex number.
- bi is the imaginary part of the complex number.
If [latex]b=0[/latex], then [latex]a+bi[/latex] is a real number. If [latex]a=0[/latex] and [latex]b[/latex] is not equal to 0, the complex number is called an imaginary number. An imaginary number is an even root of a negative number.
How To: Given an imaginary number, express it in standard form.
- Write [latex]\sqrt{-a}[/latex] as [latex]\sqrt{a}\sqrt{-1}[/latex].
- Express [latex]\sqrt{-1}[/latex] as i.
- Write [latex]\sqrt{a}\cdot i[/latex] in simplest form.
Example 1: Expressing an Imaginary Number in Standard Form
Express [latex]\sqrt{-9}\\[/latex] in standard form.
Solution
[latex]\sqrt{-9}=\sqrt{9}\sqrt{-1}=3i\\[/latex]
In standard form, this is [latex]0+3i\\[/latex].
The Discriminant
The quadratic formula not only generates the solutions to a quadratic equation, it tells us about the nature of the solutions when we consider the discriminant, or the expression under the radical, [latex]{b}^{2}-4ac[/latex]. The discriminant tells us whether the solutions are real numbers or complex numbers, and how many solutions of each type to expect. The table below relates the value of the discriminant to the solutions of a quadratic equation.
Value of Discriminant | Results |
---|---|
[latex]{b}^{2}-4ac=0[/latex] | One rational solution (double solution) |
[latex]{b}^{2}-4ac>0[/latex], perfect square | Two rational solutions |
[latex]{b}^{2}-4ac>0[/latex], not a perfect square | Two irrational solutions |
[latex]{b}^{2}-4ac<0[/latex] | Two complex solutions |
A General Note: The Discriminant
For [latex]a{x}^{2}+bx+c=0[/latex], where [latex]a[/latex], [latex]b[/latex], and [latex]c[/latex] are real numbers, the discriminant is the expression under the radical in the quadratic formula: [latex]{b}^{2}-4ac[/latex]. It tells us whether the solutions are real numbers or complex numbers and how many solutions of each type to expect.
Example 11: Using the Discriminant to Find the Nature of the Solutions to a Quadratic Equation
Use the discriminant to find the nature of the solutions to the following quadratic equations:
- [latex]{x}^{2}+4x+4=0[/latex]
- [latex]8{x}^{2}+14x+3=0[/latex]
- [latex]3{x}^{2}-5x - 2=0[/latex]
- [latex]3{x}^{2}-10x+15=0[/latex]
Solution
Calculate the discriminant [latex]{b}^{2}-4ac[/latex] for each equation and state the expected type of solutions.
- [latex]{x}^{2}+4x+4=0[/latex][latex]{b}^{2}-4ac={\left(4\right)}^{2}-4\left(1\right)\left(4\right)=0[/latex]. There will be one rational double solution.
- [latex]8{x}^{2}+14x+3=0[/latex][latex]{b}^{2}-4ac={\left(14\right)}^{2}-4\left(8\right)\left(3\right)=100[/latex]. As [latex]100[/latex] is a perfect square, there will be two rational solutions.
- [latex]3{x}^{2}-5x - 2=0[/latex][latex]{b}^{2}-4ac={\left(-5\right)}^{2}-4\left(3\right)\left(-2\right)=49[/latex]. As [latex]49[/latex] is a perfect square, there will be two rational solutions.
- [latex]3{x}^{2}-10x+15=0[/latex][latex]{b}^{2}-4ac={\left(-10\right)}^{2}-4\left(3\right)\left(15\right)=-80[/latex]. There will be two complex solutions.
Candela Citations
- Two paragraphs. Authored by: Ernesto D. Calleros. License: CC BY: Attribution
- College Algebra. Authored by: OpenStax College Algebra. Provided by: OpenStax. Located at: http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@3.278:1/Preface. License: CC BY: Attribution