1. The inverse of every logarithmic function is an exponential function and vice-versa. What does this tell us about the relationship between the coordinates of the points on the graphs of each?
2. What type(s) of translation(s), if any, affect the range of a logarithmic function?
3. What type(s) of translation(s), if any, affect the domain of a logarithmic function?
4. Consider the general logarithmic function f(x)=logb(x)f(x)=logb(x). Why can’t x be zero?
5. Does the graph of a general logarithmic function have a horizontal asymptote? Explain.
For the following exercises, state the domain and range of the function.
6. f(x)=log3(x+4)f(x)=log3(x+4)
7. h(x)=ln(12−x)h(x)=ln(12−x)
8. g(x)=log5(2x+9)−2g(x)=log5(2x+9)−2
9. h(x)=ln(4x+17)−5h(x)=ln(4x+17)−5
10. f(x)=log2(12−3x)−3f(x)=log2(12−3x)−3
For the following exercises, state the domain and the vertical asymptote of the function.
11. f(x)=logb(x−5)f(x)=logb(x−5)
12. g(x)=ln(3−x)g(x)=ln(3−x)
13. f(x)=log(3x+1)f(x)=log(3x+1)
14. f(x)=3log(−x)+2f(x)=3log(−x)+2
15. g(x)=−ln(3x+9)−7g(x)=−ln(3x+9)−7
For the following exercises, state the domain, vertical asymptote, and end behavior of the function.
16. f(x)=ln(2−x)f(x)=ln(2−x)
17. f(x)=log(x−37)f(x)=log(x−37)
18. h(x)=−log(3x−4)+3h(x)=−log(3x−4)+3
19. g(x)=ln(2x+6)−5g(x)=ln(2x+6)−5
20. f(x)=log3(15−5x)+6f(x)=log3(15−5x)+6
For the following exercises, state the domain, range, and x- and y-intercepts, if they exist. If they do not exist, write DNE.
21. h(x)=log4(x−1)+1h(x)=log4(x−1)+1
22. f(x)=log(5x+10)+3f(x)=log(5x+10)+3
23. g(x)=ln(−x)−2g(x)=ln(−x)−2
24. f(x)=log2(x+2)−5f(x)=log2(x+2)−5
25. h(x)=3ln(x)−9h(x)=3ln(x)−9
For the following exercises, match each function in the graph below with the letter corresponding to its graph.
26. d(x)=log(x)d(x)=log(x)
27. f(x)=ln(x)f(x)=ln(x)
28. g(x)=log2(x)g(x)=log2(x)
29. h(x)=log5(x)h(x)=log5(x)
30. j(x)=log25(x)j(x)=log25(x)
For the following exercises, match each function in the figure below with the letter corresponding to its graph.
31. f(x)=log13(x)f(x)=log13(x)
32. g(x)=log2(x)g(x)=log2(x)
33. h(x)=log34(x)h(x)=log34(x)
For the following exercises, sketch the graphs of each pair of functions on the same axis.
34. f(x)=log(x)f(x)=log(x) and g(x)=10xg(x)=10x
35. f(x)=log(x)f(x)=log(x) and g(x)=log12(x)g(x)=log12(x)
36. f(x)=log4(x)f(x)=log4(x) and g(x)=ln(x)g(x)=ln(x)
37. f(x)=exf(x)=ex and g(x)=ln(x)g(x)=ln(x)
For the following exercises, match each function in the graph below with the letter corresponding to its graph.
38. f(x)=log4(−x+2)f(x)=log4(−x+2)
39. g(x)=−log4(x+2)g(x)=−log4(x+2)
40. h(x)=log4(x+2)h(x)=log4(x+2)
For the following exercises, sketch the graph of the indicated function.
41. f(x)=log2(x+2)f(x)=log2(x+2)
42. f(x)=2log(x)
43. f(x)=ln(−x)
44. g(x)=log(4x+16)+4
45. g(x)=log(6−3x)+1
46. h(x)=−12ln(x+1)−3
For the following exercises, write a logarithmic equation corresponding to the graph shown.
47. Use y=log2(x) as the parent function.
48. Use f(x)=log3(x) as the parent function.
49. Use f(x)=log4(x) as the parent function.
50. Use f(x)=log5(x) as the parent function.
For the following exercises, use a graphing calculator to find approximate solutions to each equation.
51. log(x−1)+2=ln(x−1)+2
52. log(2x−3)+2=−log(2x−3)+5
53. ln(x−2)=−ln(x+1)
54. 2ln(5x+1)=12ln(−5x)+1
55. 13log(1−x)=log(x+1)+13
56. Let b be any positive real number such that b≠1. What must logb1 be equal to? Verify the result.
57. Explore and discuss the graphs of f(x)=log12(x) and g(x)=−log2(x). Make a conjecture based on the result.
58. Prove the conjecture made in the previous exercise.
59. What is the domain of the function f(x)=ln(x+2x−4)? Discuss the result.
60. Use properties of exponents to find the x-intercepts of the function f(x)=log(x2+4x+4) algebraically. Show the steps for solving, and then verify the result by graphing the function.
Candela Citations
- Precalculus. Authored by: Jay Abramson, et al.. Provided by: OpenStax. Located at: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175. License: CC BY: Attribution. License Terms: Download For Free at : http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175.