To set up or model a linear equation to fit a real-world application, we must first determine the known quantities and define the unknown quantity as a variable. Then, we begin to interpret the words as mathematical expressions using mathematical symbols. Let us use the car rental example above. In this case, a known cost, such as $0.10/mi, is multiplied by an unknown quantity, the number of miles driven. Therefore, we can write 0.10x. This expression represents a variable cost because it changes according to the number of miles driven.
If a quantity is independent of a variable, we usually just add or subtract it, according to the problem. As these amounts do not change, we call them fixed costs. Consider a car rental agency that charges $0.10/mi plus a daily fee of $50. We can use these quantities to model an equation that can be used to find the daily car rental cost C.
When dealing with real-world applications, there are certain expressions that we can translate directly into math. The table lists some common verbal expressions and their equivalent mathematical expressions.
Verbal | Translation to Math Operations |
---|---|
One number exceeds another by a | x, x+a |
Twice a number | 2x |
One number is a more than another number | x, x+a |
One number is a less than twice another number | x,2x−a |
The product of a number and a, decreased by b | ax−b |
The quotient of a number and the number plus a is three times the number | xx+a=3x |
The product of three times a number and the number decreased by b is c | 3x(x−b)=c |
How To: Given a real-world problem, model a linear equation to fit it.
- Identify known quantities.
- Assign a variable to represent the unknown quantity.
- If there is more than one unknown quantity, find a way to write the second unknown in terms of the first.
- Write an equation interpreting the words as mathematical operations.
- Solve the equation. Be sure the solution can be explained in words, including the units of measure.
Example 1: Modeling a Linear Equation to Solve an Unknown Number Problem
Find a linear equation to solve for the following unknown quantities: One number exceeds another number by 17 and their sum is 31. Find the two numbers.
Solution
Let x equal the first number. Then, as the second number exceeds the first by 17, we can write the second number as x+17. The sum of the two numbers is 31. We usually interpret the word is as an equal sign.
The two numbers are 7 and 24.
Try It 1
Find a linear equation to solve for the following unknown quantities: One number is three more than twice another number. If the sum of the two numbers is 36, find the numbers.
Example 2: Setting Up a Linear Equation to Solve a Real-World Application
There are two cell phone companies that offer different packages. Company A charges a monthly service fee of $34 plus $.05/min talk-time. Company B charges a monthly service fee of $40 plus $.04/min talk-time.
- Write a linear equation that models the packages offered by both companies.
- If the average number of minutes used each month is 1,160, which company offers the better plan?
- If the average number of minutes used each month is 420, which company offers the better plan?
- How many minutes of talk-time would yield equal monthly statements from both companies?
Solution
- The model for Company A can be written as A=0.05x+34. This includes the variable cost of 0.05x plus the monthly service charge of $34. Company B’s package charges a higher monthly fee of $40, but a lower variable cost of 0.04x. Company B’s model can be written as B=0.04x+$40.
- If the average number of minutes used each month is 1,160, we have the following:
Company A=0.05(1,160)+34=58+34=92Company B=0.04(1,160)+40=46.4+40=86.4
So, Company B offers the lower monthly cost of $86.40 as compared with the $92 monthly cost offered by Company A when the average number of minutes used each month is 1,160.
- If the average number of minutes used each month is 420, we have the following:
Company A=0.05(420)+34=21+34=55Company B=0.04(420)+40=16.8+40=56.8
If the average number of minutes used each month is 420, then Company A offers a lower monthly cost of $55 compared to Company B’s monthly cost of $56.80.
- To answer the question of how many talk-time minutes would yield the same bill from both companies, we should think about the problem in terms of (x,y) coordinates: At what point are both the x-value and the y-value equal? We can find this point by setting the equations equal to each other and solving for x.
0.05x+34=0.04x+400.01x=6x=600
Check the x-value in each equation.
0.05(600)+34=640.04(600)+40=64Therefore, a monthly average of 600 talk-time minutes renders the plans equal.

Figure 2
Try It 2
Find a linear equation to model this real-world application: It costs ABC electronics company $2.50 per unit to produce a part used in a popular brand of desktop computers. The company has monthly operating expenses of $350 for utilities and $3,300 for salaries. What are the company’s monthly expenses?
Candela Citations
- College Algebra. Authored by: OpenStax College Algebra. Provided by: OpenStax. Located at: http://cnx.org/contents/9b08c294-057f-4201-9f48-5d6ad992740d@3.278:1/Preface. License: CC BY: Attribution