Solutions to Try Its
1. x2+y216=1
2. (x−1)216+(y−3)24=1
3. center: (0,0); vertices: (±6,0); co-vertices: (0,±2); foci: (±4√2,0)

4. Standard form: x216+y249=1; center: (0,0); vertices: (0,±7); co-vertices: (±4,0); foci: (0,±√33)

5. Center: (4,2); vertices: (−2,2) and (10,2); co-vertices: (4,2−2√5) and (4,2+2√5); foci: (0,2) and (8,2)

6. (x−3)24+(y+1)216=1; center: (3,−1); vertices: (3,−5) and (3,3); co-vertices: (1,−1) and (5,−1); foci: (3,−1−2√3) and (3,−1+2√3)
7. a. x257,600+y225,600=1
b. The people are standing 358 feet apart.
Solutions to Odd-Numbered Exercises
1. An ellipse is the set of all points in the plane the sum of whose distances from two fixed points, called the foci, is a constant.
3. This special case would be a circle.
5. It is symmetric about the x-axis, y-axis, and the origin.
7. yes; x232+y222=1
9. yes; x2(12)2+y2(13)2=1
11. x222+y272=1; Endpoints of major axis (0,7) and (0,−7). Endpoints of minor axis (2,0) and (−2,0). Foci at (0,3√5),(0,−3√5).
13. x2(1)2+y2(13)2=1; Endpoints of major axis (1,0) and (−1,0). Endpoints of minor axis (0,13),(0,−13). Foci at (2√23,0),(−2√23,0).
15. (x−2)272+(y−4)252=1; Endpoints of major axis (9,4),(−5,4). Endpoints of minor axis (2,9),(2,−1). Foci at (2+2√6,4),(2−2√6,4).
17. (x+5)222+(y−7)232=1; Endpoints of major axis (−5,10),(−5,4). Endpoints of minor axis (−3,7),(−7,7). Foci at (−5,7+√5),(−5,7−√5).
19. (x−1)232+(y−4)222=1; Endpoints of major axis (4,4),(−2,4). Endpoints of minor axis (1,6),(1,2). Foci at (1+√5,4),(1−√5,4).
21. (x−3)2(3√2)2+(y−5)2(√2)2=1; Endpoints of major axis (3+3√2,5),(3−3√2,5). Endpoints of minor axis (3,5+√2),(3,5−√2). Foci at (7,5),(−1,5).
23. (x+5)2(5)2+(y−2)2(2)2=1; Endpoints of major axis (0,2),(−10,2). Endpoints of minor axis (−5,4),(−5,0). Foci at (−5+√21,2),(−5−√21,2).
25. (x+3)2(5)2+(y+4)2(2)2=1; Endpoints of major axis (2,−4),(−8,−4). Endpoints of minor axis (−3,−2),(−3,−6). Foci at (−3+√21,−4),(−3−√21,−4).
27. Foci (−3,−1+√11),(−3,−1−√11)
29. Focus (0,0)
31. Foci (−10,30),(−10,−30)
33. Center (0,0), Vertices (4,0),(−4,0),(0,3),(0,−3), Foci (√7,0),(−√7,0)

35. Center (0,0), Vertices (19,0),(−19,0),(0,17),(0,−17), Foci (0,4√263),(0,−4√263)

37. Center (−3,3), Vertices (0,3),(−6,3),(−3,0),(−3,6), Focus (−3,3)
Note that this ellipse is a circle. The circle has only one focus, which coincides with the center.

39. Center (1,1), Vertices (5,1),(−3,1),(1,3),(1,−1), Foci (1,1+4√3),(1,1−4√3)

41. Center (−4,5), Vertices (−2,5),(−6,4),(−4,6),(−4,4), Foci (−4+√3,5),(−4−√3,5)

43. Center (−2,1), Vertices (0,1),(−4,1),(−2,5),(−2,−3), Foci (−2,1+2√3),(−2,1−2√3)

45. Center (−2,−2), Vertices (0,−2),(−4,−2),(−2,0),(−2,−4), Focus (−2,−2)

47. x225+y229=1
49. (x−4)225+(y−2)21=1
51. (x+3)216+(y−4)24=1
53. x281+y29=1
55. (x+2)24+(y−2)29=1
57. Area=12π square units
59. Area=2√5π square units
61. Area 9π square units
63. x24h2+y214h2=1
65. x2400+y2144=1. Distance = 17.32 feet
67. Approximately 51.96 feet
Candela Citations
CC licensed content, Specific attribution