Solutions

Solutions to Try Its

1. x2+y216=1

2. (x1)216+(y3)24=1

3. center: (0,0); vertices: (±6,0); co-vertices: (0,±2); foci: (±42,0)

4. Standard form: x216+y249=1; center: (0,0); vertices: (0,±7); co-vertices: (±4,0); foci: (0,±33)

5. Center: (4,2); vertices: (2,2) and (10,2); co-vertices: (4,225) and (4,2+25); foci: (0,2) and (8,2)

6. (x3)24+(y+1)216=1; center: (3,1); vertices: (3,5) and (3,3); co-vertices: (1,1) and (5,1); foci: (3,123) and (3,1+23)

7. a. x257,600+y225,600=1
b. The people are standing 358 feet apart.

Solutions to Odd-Numbered Exercises

1. An ellipse is the set of all points in the plane the sum of whose distances from two fixed points, called the foci, is a constant.

3. This special case would be a circle.

5. It is symmetric about the x-axis, y-axis, and the origin.

7. yes; x232+y222=1

9. yes; x2(12)2+y2(13)2=1

11. x222+y272=1; Endpoints of major axis (0,7) and (0,7). Endpoints of minor axis (2,0) and (2,0). Foci at (0,35),(0,35).

13. x2(1)2+y2(13)2=1; Endpoints of major axis (1,0) and (1,0). Endpoints of minor axis (0,13),(0,13). Foci at (223,0),(223,0).

15. (x2)272+(y4)252=1; Endpoints of major axis (9,4),(5,4). Endpoints of minor axis (2,9),(2,1). Foci at (2+26,4),(226,4).

17. (x+5)222+(y7)232=1; Endpoints of major axis (5,10),(5,4). Endpoints of minor axis (3,7),(7,7). Foci at (5,7+5),(5,75).

19. (x1)232+(y4)222=1; Endpoints of major axis (4,4),(2,4). Endpoints of minor axis (1,6),(1,2). Foci at (1+5,4),(15,4).

21. (x3)2(32)2+(y5)2(2)2=1; Endpoints of major axis (3+32,5),(332,5). Endpoints of minor axis (3,5+2),(3,52). Foci at (7,5),(1,5).

23. (x+5)2(5)2+(y2)2(2)2=1; Endpoints of major axis (0,2),(10,2). Endpoints of minor axis (5,4),(5,0). Foci at (5+21,2),(521,2).

25. (x+3)2(5)2+(y+4)2(2)2=1; Endpoints of major axis (2,4),(8,4). Endpoints of minor axis (3,2),(3,6). Foci at (3+21,4),(321,4).

27. Foci (3,1+11),(3,111)

29. Focus (0,0)

31. Foci (10,30),(10,30)

33. Center (0,0), Vertices (4,0),(4,0),(0,3),(0,3), Foci (7,0),(7,0)

35. Center (0,0), Vertices (19,0),(19,0),(0,17),(0,17), Foci (0,4263),(0,4263)

37. Center (3,3), Vertices (0,3),(6,3),(3,0),(3,6), Focus (3,3)
Note that this ellipse is a circle. The circle has only one focus, which coincides with the center.

39. Center (1,1), Vertices (5,1),(3,1),(1,3),(1,1), Foci (1,1+43),(1,143)

41. Center (4,5), Vertices (2,5),(6,4),(4,6),(4,4), Foci (4+3,5),(43,5)

43. Center (2,1), Vertices (0,1),(4,1),(2,5),(2,3), Foci (2,1+23),(2,123)

45. Center (2,2), Vertices (0,2),(4,2),(2,0),(2,4), Focus (2,2)

47. x225+y229=1

49. (x4)225+(y2)21=1

51. (x+3)216+(y4)24=1

53. x281+y29=1

55. (x+2)24+(y2)29=1

57. Area=12π square units

59. Area=25π square units

61. Area 9π square units

63. x24h2+y214h2=1

65. x2400+y2144=1. Distance = 17.32 feet

67. Approximately 51.96 feet