Solutions

Solutions for Try Its

1. {(fg)(x)=f(x)g(x)=(x1)(x21)=x3x2x+1(fg)(x)=f(x)g(x)=(x1)(x21)=xx2
No, the functions are not the same.

2. A gravitational force is still a force, so a(G(r)) makes sense as the acceleration of a planet at a distance r from the Sun (due to gravity), but G(a(F)) does not make sense.

3. f(g(1))=f(3)=3 and g(f(4))=g(1)=3

4. g(f(2))=g(5)=3

5. A. 8; B. 20

6. [4,0)(0,)

7. Possible answer:

g(x)=4+x2

h(x)=43x

f=hg

 
 

Solutions to Odd-Numbered Exercises

1. Find the numbers that make the function in the denominator g equal to zero, and check for any other domain restrictions on f and g, such as an even-indexed root or zeros in the denominator.

3. Yes. Sample answer: Let f(x)=x+1 and g(x)=x1. Then f(g(x))=f(x1)=(x1)+1=x and g(f(x))=g(x+1)=(x+1)1=x. So fg=gf.

5. (f+g)(x)=2x+6, domain: (,)

(fg)(x)=2x2+2x6, domain: (,)

(fg)(x)=x42x3+6x2+12x, domain: (,)

(fg)(x)=x2+2x6x2, domain: (,6)(6,6)(6,)

7. (f+g)(x)=4x3+8x2+12x, domain: (,0)(0,)

(fg)(x)=4x3+8x212x, domain: (,0)(0,)

(fg)(x)=x+2, domain: (,0)(0,)

(fg)(x)=4x3+8x2, domain: (,0)(0,)

9. (f+g)(x)=3x2+x5, domain: [5,)

(fg)(x)=3x2x5, domain: [5,)

(fg)(x)=3x2x5, domain: [5,)

(fg)(x)=3x2x5, domain: (5,)

11. a. 3; b. f(g(x))=2(3x5)2+1; c. f(g(x))=6x22; d. (gg)(x)=3(3x5)5=9x20; e. (ff)(2)=163

13. f(g(x))=x2+3+2,g(f(x))=x+4x+7

15. f(g(x))=3x+1x3=3x+1x,g(f(x))=3x+1x

17. (fg)(x)=12x+44=x2, (gf)(x)=2x4

19. f(g(h(x)))=(1x+3)2+1

21. a. (gf)(x)=324x; b. (,12)

23. a. (0,2)(2,); b. (,2)(2,); c. (0,)

25. (1,)

27. sample: {f(x)=x3g(x)=x5

29. sample: {f(x)=4xg(x)=(x+2)2

31. sample: {f(x)=3xg(x)=12x3

33. sample: {f(x)=4xg(x)=3x2x+5

35. sample: f(x)=x
g(x)=2x+6

37.sample: f(x)=3x
g(x)=(x1)

39. sample: f(x)=x3
g(x)=1x2

41. sample: f(x)=x
g(x)=2x13x+4

43. 2

45. 5

47. 4

49. 0

51. 2

53. 1

55. 4

57. 4

59. 9

61. 4

63. 2

65. 3

67. 11

69. 0

71. 7

73. f(g(0))=27,g(f(0))=94

75. f(g(0))=15,g(f(0))=5

77. 18x2+60x+51

79. gg(x)=9x+20

81. 2

83. (,)

85. False

87. (fg)(6)=6 ; (gf)(6)=6

89. (fg)(11)=11,(gf)(11)=11

91. c. Solve A(m(t))=4.

93. A(t)=π(25t+2)2 and A(2)=π(254)2=2500π square inches

95. A(5)=π(2(5)+1)2=121π square units

97. a. N(T(t))=23(5t+1.5)256(5t+1.5)+1;
b. 3.38 hours