Pythagorean Identities |
⎧⎨⎩cos2t+sin2t=11+tan2t=sec2t1+cot2t=csc2t |
Even-Odd Identities |
⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩cos(−t)=costsec(−t)=sectsin(−t)=−sinttan(−t)=−tantcsc(−t)=−csctcot(−t)=−cott |
Cofunction Identities |
⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩cost=sin(π2−t)sint=cos(π2−t)tant=cot(π2−t)cott=tan(π2−t)sect=csc(π2−t)csct=sec(π2−t) |
Fundamental Identities |
⎧⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪⎩tant=sintcostsect=1costcsct=1sintcott=1tant=costsint |
Sum and Difference Identities |
⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩cos(α+β)=cosαcosβ−sinαsinβcos(α−β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α−β)=sinαcosβ−cosαsinβtan(α+β)=tanα+tanβ1−tanαtanβtan(α−β)=tanα−tanβ1+tanαtanβ |
Double-Angle Formulas |
⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩sin(2θ)=2sinθcosθcos(2θ)=cos2θ−sin2θcos(2θ)=1−2sin2θcos(2θ)=2cos2θ−1tan(2θ)=2tanθ1−tan2θ |
Half-Angle Formulas |
⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩sinα2=±√1−cosα2cosα2=±√1+cosα2tanα2=±√1−cosα1+cosαtanα2=sinα1+cosαtanα2=1−cosαsinα |
Reduction Formulas |
⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩sin2θ=1−cos(2θ)2cos2θ=1+cos(2θ)2tan2θ=1−cos(2θ)1+cos(2θ) |
Product-to-Sum Formulas |
⎧⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪⎩cosαcosβ=12[cos(α−β)+cos(α+β)]sinαcosβ=12[sin(α+β)+sin(α−β)]sinαsinβ=12[cos(α−β)−cos(α+β)]cosαsinβ=12[sin(α+β)−sin(α−β)] |
Sum-to-Product Formulas |
⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩sinα+sinβ=2sin(α+β2)cos(α−β2)sinα−sinβ=2sin(α−β2)cos(α+β2)cosα−cosβ=−2sin(α+β2)sin(α−β2)cosα+cosβ=2cos(α+β2)cos(α−β2) |
Law of Sines |
{sinαa=sinβb=sinγcasinα=bsinβ=csinγ |
Law of Cosines |
⎧⎪⎨⎪⎩a2=b2+c2−2bccosαb2=a2+c2−2accosβc2=a2+b2−2abcosγ |