## Geometric Sequences

### Learning Outcomes

By the end of this section, you will be able to:

• Find the common ratio for a geometric sequence.
• Give terms of a geometric sequence.
• Write the formula for a geometric sequence.

### Finding Common Ratios

The yearly salary values described form a geometric sequence because they change by a constant factor each year. Each term of a geometric sequence increases or decreases by a constant factor called the common ratio. The sequence below is an example of a geometric sequence because each term increases by a constant factor of 6. Multiplying any term of the sequence by the common ratio 6 generates the subsequent term.

### A General Note: Definition of a Geometric Sequence

A geometric sequence is one in which any term divided by the previous term is a constant. This constant is called the common ratio of the sequence. The common ratio can be found by dividing any term in the sequence by the previous term. If ${a}_{1}$ is the initial term of a geometric sequence and $r$ is the common ratio, the sequence will be

$\left\{{a}_{1}, {a}_{1}r,{a}_{1}{r}^{2},{a}_{1}{r}^{3},…\right\}$.

### How To: Given a set of numbers, determine if they represent a geometric sequence.

1. Divide each term by the previous term.
2. Compare the quotients. If they are the same, a common ratio exists and the sequence is geometric.

### Example 1: Finding Common Ratios

Is the sequence geometric? If so, find the common ratio.

1. $1\text{,}2\text{,}4\text{,}8\text{,}16\text{,}..$.
2. $48\text{,}12\text{,}4\text{, }2\text{,}..$.

### If you are told that a sequence is geometric, do you have to divide every term by the previous term to find the common ratio?

No. If you know that the sequence is geometric, you can choose any one term in the sequence and divide it by the previous term to find the common ratio.

### Try It

Is the sequence geometric? If so, find the common ratio.

$5,10,15,20,\dots.$

### Try It

Is the sequence geometric? If so, find the common ratio.

$100,20,4,\frac{4}{5},\dots$

## Writing Terms of Geometric Sequences

Now that we can identify a geometric sequence, we will learn how to find the terms of a geometric sequence if we are given the first term and the common ratio. The terms of a geometric sequence can be found by beginning with the first term and multiplying by the common ratio repeatedly. For instance, if the first term of a geometric sequence is ${a}_{1}=-2$ and the common ratio is $r=4$, we can find subsequent terms by multiplying $-2\cdot 4$ to get $-8$ then multiplying the result $-8\cdot 4$ to get $-32$ and so on.

\begin{align}&{a}_{1}=-2 \\ &{a}_{2}=\left(-2\cdot 4\right)=-8 \\ &{a}_{3}=\left(-8\cdot 4\right)=-32 \\ &{a}_{4}=\left(-32\cdot 4\right)-128\end{align}

The first four terms are $\left\{-2\text{, }-8\text{, }-32\text{, }-128\right\}$.

### How To: Given the first term and the common factor, find the first four terms of a geometric sequence.

1. Multiply the initial term, ${a}_{1}$, by the common ratio to find the next term, ${a}_{2}$.
2. Repeat the process, using ${a}_{n}={a}_{2}$ to find ${a}_{3}$ and then ${a}_{3}$ to find ${a}_{4,}$ until all four terms have been identified.
3. Write the terms separated by commons within brackets.

### Example 2: Writing the Terms of a Geometric Sequence

List the first four terms of the geometric sequence with ${a}_{1}=5$ and $r=-2$.

### Try It

List the first five terms of the geometric sequence with ${a}_{1}=18$ and $r=\frac{1}{3}$.

## Using Recursive Formulas for Geometric Sequences

A recursive formula allows us to find any term of a geometric sequence by using the previous term. Each term is the product of the common ratio and the previous term. For example, suppose the common ratio is 9. Then each term is nine times the previous term. As with any recursive formula, the initial term must be given.

### A General Note: Recursive Formula for a Geometric Sequence

The recursive formula for a geometric sequence with common ratio $r$ and first term ${a}_{1}$ is

${a}_{n}=r{a}_{n - 1},n\ge 2$

### How To: Given the first several terms of a geometric sequence, write its recursive formula.

1. State the initial term.
2. Find the common ratio by dividing any term by the preceding term.
3. Substitute the common ratio into the recursive formula for a geometric sequence.

### Example 3: Using Recursive Formulas for Geometric Sequences

Write a recursive formula for the following geometric sequence.

$\left\{6\text{, }9\text{, }13.5\text{, }20.25\text{, }\dots\right\}$

### Do we have to divide the second term by the first term to find the common ratio?

No. We can divide any term in the sequence by the previous term. It is, however, most common to divide the second term by the first term because it is often the easiest method of finding the common ratio.

### Try It

Write a recursive formula for the following geometric sequence.

$\left\{2\text{, }\frac{4}{3}\text{, }\frac{8}{9}\text{, }\frac{16}{27}\text{, }\dots\right\}$

## Using Explicit Formulas for Geometric Sequences

Because a geometric sequence is an exponential function whose domain is the set of positive integers, and the common ratio is the base of the function, we can write explicit formulas that allow us to find particular terms.

${a}_{n}={a}_{1}{r}^{n - 1}$

Let’s take a look at the sequence $\left\{18\text{, }36\text{, }72\text{, }144\text{, }288\text{, }…\right\}$. This is a geometric sequence with a common ratio of 2 and an exponential function with a base of 2. An explicit formula for this sequence is

${a}_{n}=18\cdot {2}^{n - 1}$

The graph of the sequence is shown in Figure 3.

Figure 3

### A General Note: Explicit Formula for a Geometric Sequence

The nth term of a geometric sequence is given by the explicit formula:

${a}_{n}={a}_{1}{r}^{n - 1}$

### Example 4: Writing Terms of Geometric Sequences Using the Explicit Formula

Given a geometric sequence with ${a}_{1}=3$ and ${a}_{4}=24$, find ${a}_{2}$.

### Try It

Given a geometric sequence with ${a}_{2}=4$ and ${a}_{3}=32$ , find ${a}_{6}$.

### Example 6: Writing an Explicit Formula for the nth Term of a Geometric Sequence

Write an explicit formula for the $n\text{th}$ term of the following geometric sequence.

$\left\{2\text{, }10\text{, }50\text{, }250\text{, }\dots\right\}$

### Try It

Write an explicit formula for the following geometric sequence.

$\left\{-1\text{, }3\text{, }-9\text{, }27\text{, }\dots\right\}$

## Solving Application Problems with Geometric Sequences

In real-world scenarios involving arithmetic sequences, we may need to use an initial term of ${a}_{0}$ instead of ${a}_{1}$. In these problems, we can alter the explicit formula slightly by using the following formula:

${a}_{n}={a}_{0}{r}^{n}$

### Example 7: Solving Application Problems with Geometric Sequences

In 2013, the number of students in a small school is 284. It is estimated that the student population will increase by 4% each year.

1. Write a formula for the student population.
2. Estimate the student population in 2020.

### Try It

A business starts a new website. Initially the number of hits is 293 due to the curiosity factor. The business estimates the number of hits will increase by 2.6% per week.

a. Write a formula for the number of hits.

b. Estimate the number of hits in 5 weeks.

## Key Equations

 recursive formula for $nth$ term of a geometric sequence ${a}_{n}=r{a}_{n - 1},n\ge 2$ explicit formula for $nth$ term of a geometric sequence ${a}_{n}={a}_{1}{r}^{n - 1}$

## Key Concepts

• A geometric sequence is a sequence in which the ratio between any two consecutive terms is a constant.
• The constant ratio between two consecutive terms is called the common ratio.
• The common ratio can be found by dividing any term in the sequence by the previous term.
• The terms of a geometric sequence can be found by beginning with the first term and multiplying by the common ratio repeatedly.
• A recursive formula for a geometric sequence with common ratio $r$ is given by ${a}_{n}=r{a}_{n - 1}$ for $n\ge 2$ .
• As with any recursive formula, the initial term of the sequence must be given.
• An explicit formula for a geometric sequence with common ratio $r$ is given by ${a}_{n}={a}_{1}{r}^{n - 1}$.
• In application problems, we sometimes alter the explicit formula slightly to ${a}_{n}={a}_{0}{r}^{n}$.

## Glossary

common ratio
the ratio between any two consecutive terms in a geometric sequence
geometric sequence
a sequence in which the ratio of a term to a previous term is a constant