1. Why does the domain differ for different functions?
2. How do we determine the domain of a function defined by an equation?
3. Explain why the domain of f(x)=3√x is different from the domain of f(x)=√x.
4. When describing sets of numbers using interval notation, when do you use a parenthesis and when do you use a bracket?
5. How do you graph a piecewise function?
For the following exercises, find the domain of each function using interval notation.
6. f(x)=−2x(x−1)(x−2)
7. f(x)=5−2x2
8. f(x)=3√x−2
9. f(x)=3−√6−2x
10. f(x)=√4−3x
11. f(x)=√x2+4
12. f(x)=3√1−2x
13. f(x)=3√x−1
14. f(x)=9x−6
15. f(x)=3x+14x+2
16. f(x)=√x+4x−4
17. f(x)=x−3x2+9x−22
18. f(x)=1x2−x−6
19. f(x)=2x3−250x2−2x−15
20. 5√x−3
21. 2x+1√5−x
22. f(x)=√x−4√x−6
23. f(x)=√x−6√x−4
24. f(x)=xx
25. f(x)=x2−9xx2−81
26. Find the domain of the function f(x)=√2x3−50x by:
b. graphing the function in the radicand and determining intervals on the x-axis for which the radicand is nonnegative.
For the following exercises, write the domain and range of each function using interval notation.
27.
Domain: ________ Range: ________
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
For the following exercises, sketch a graph of the piecewise function. Write the domain in interval notation.
38. f(x)={x+1 if x<−2−2x−3 if x≥−2 39. f(x)={2x−1 if x<11+x if x≥1 40. f(x)={x+1 if x<0x−1 if x>0
41. f(x)={3 if x<0√x if x≥0 42. f(x)={x2 if x<01−x if x>0
43. f(x)={x2 if x<0x+2 if x≥0 44. f(x)={x+1ifx<1x3ifx≥1 45. f(x)={|x| if x<21 if x≥2 For the following exercises, given each function f, evaluate f(−3),f(−2),f(−1), and f(0). 46. f(x)={x+1 if x<−2−2x−3 if x≥−2 47. f(x)={1 if x≤−30 if x>−3
48. f(x)={−2x2+3 if x≤−15x−7 if x>−1
For the following exercises, given each function f, evaluate f(−1),f(0),f(2), and f(4).
49. f(x)={7x+3 if x<07x+6 if x≥0
50. f(x)={x2−2 if x<24+|x−5| if x≥2
51. f(x)={5xifx<03if0≤x≤3x2ifx>3
For the following exercises, write the domain for the piecewise function in interval notation.
52. f(x)={x+1 if x<−2−2x−3 if x≥−2 53. f(x)={x2−2 ifx<1−x2+2 if x>1
54. f(x)={2x−3 if x<0−3x2 if x≥2 55. Graph y=1x2 on the viewing window [−0.5,−0.1] and [0.1,0.5]. Determine the corresponding range for the viewing window. Show the graphs. 56. Graph y=1x on the viewing window [−0.5,−0.1] and [0.1, 0.5]. Determine the corresponding range for the viewing window. Show the graphs. 57. Suppose the range of a function f is [−5, 8]. What is the range of |f(x)|? 58. Create a function in which the range is all nonnegative real numbers. 59 .Create a function in which the domain is x>2.
60. The cost in dollars of making x items is given by the function C(x)=10x+500.
B. What is the cost of making 25 items?
C. Suppose the maximum cost allowed is $1500. What are the domain and range of the cost function, C(x)?
61. The height h of a projectile is a function of the time t it is in the air. The height in feet for t seconds is given by the function h(t)=−16t2+96t. What is the domain of the function? What does the domain mean in the context of the problem?
Candela Citations
- Precalculus. Authored by: Jay Abramson, et al.. Provided by: OpenStax. Located at: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175. License: CC BY: Attribution. License Terms: Download For Free at : http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175.