Problem Set 51: Solving Trigonometric Equations With Identities

1. We know g(x)=cosx is an even function, and f(x)=sinx and h(x)=tanx are odd functions. What about G(x)=cos2x,F(x)=sin2x, and H(x)=tan2x? Are they even, odd, or neither? Why?

2. Examine the graph of f(x)=secx on the interval [π,π]. How can we tell whether the function is even or odd by only observing the graph of f(x)=secx?

3. After examining the reciprocal identity for sect, explain why the function is undefined at certain points.

4. All of the Pythagorean identities are related. Describe how to manipulate the equations to get from sin2t+cos2t=1 to the other forms.

For the following exercises, use the fundamental identities to fully simplify the expression.

5. sinxcosxsecx

6. sin(x)cos(x)csc(x)

7. tanxsinx+secxcos2x

8. cscx+cosxcot(x)

9. cott+tantsec(t)

10. 3sin3tcsct+cos2t+2cos(t)cost

11. tan(x)cot(x)

12. sin(x)cosxsecxcscxtanxcotx

13. 1+tan2θcsc2θ+sin2θ+1sec2θ

14. (tanxcsc2x+tanxsec2x)(1+tanx1+cotx)1cos2x

15. 1cos2xtan2x+2sin2x

For the following exercises, simplify the first trigonometric expression by writing the simplified form in terms of the second expression.

16. tanx+cotxcscx;cosx

17. secx+cscx1+tanx;sinx

18. cosx1+sinx+tanx;cosx

19. 1sinxcosxcotx;cotx

20. 11cosxcosx1+cosx;cscx

21. (secx+cscx)(sinx+cosx)2cotx;tanx

22. 1cscxsinx;secx and tanx

23. 1sinx1+sinx1+sinx1sinx;secx and tanx

24. tanx;secx

25. secx;cotx

26. secx;sinx

27. cotx;sinx

28. cotx;cscx

For the following exercises, verify the identity.

29. cosxcos3x=cosxsin2x

30. cosx(tanxsec(x))=sinx1

31. 1+sin2xcos2x=1cos2x+sin2xcos2x=1+2tan2x

32. (sinx+cosx)2=1+2sinxcosx

33. cos2xtan2x=2sin2xsec2x

For the following exercises, prove or disprove the identity.

34. 11+cosx11cos(x)=2cotxcscx

35. csc2x(1+sin2x)=cot2x

36. (sec2(x)tan2xtanx)(2+2tanx2+2cotx)2sin2x=cos2x

37. tanxsecxsin(x)=cos2x

38. sec(x)tanx+cotx=sin(x)

39. 1+sinxcosx=cosx1+sin(x)

For the following exercises, determine whether the identity is true or false. If false, find an appropriate equivalent expression.

40. cos2θsin2θ1tan2θ=sin2θ

41. 3sin2θ+4cos2θ=3+cos2θ

42. secθ+tanθcotθ+cosθ=sec2θ