1. Explain how to determine the reduction identities from the double-angle identity cos(2x)=cos2x−sin2xcos(2x)=cos2x−sin2x.
2. Explain how to determine the double-angle formula for tan(2x)tan(2x) using the double-angle formulas for cos(2x)cos(2x) and sin(2x)sin(2x).
3. We can determine the half-angle formula for tan(x2)=√1−cosx√1+cosxtan(x2)=√1−cosx√1+cosx by dividing the formula for sin(x2)sin(x2) by cos(x2)cos(x2). Explain how to determine two formulas for tan(x2)tan(x2) that do not involve any square roots.
4. For the half-angle formula given in the previous exercise for tan(x2)tan(x2), explain why dividing by 0 is not a concern. (Hint: examine the values of cosxcosx necessary for the denominator to be 0.)
For the following exercises, find the exact values of a) sin(2x)sin(2x), b) cos(2x)cos(2x), and c) tan(2x)tan(2x) without solving for xx.
5. If sinx=18sinx=18, and xx is in quadrant I.
6. If cosx=23cosx=23, and xx is in quadrant I.
7. If cosx=−12cosx=−12, and xx is in quadrant III.
8. If tanx=−8tanx=−8, and xx is in quadrant IV.
For the following exercises, find the values of the six trigonometric functions if the conditions provided hold.
9. cos(2θ)=35cos(2θ)=35 and 90∘≤θ≤180∘90∘≤θ≤180∘
10. cos(2θ)=1√2cos(2θ)=1√2 and 180∘≤θ≤270∘180∘≤θ≤270∘
For the following exercises, simplify to one trigonometric expression.
11. 2sin(π4)2cos(π4)2sin(π4)2cos(π4)
12. 4sin(π8)cos(π8)4sin(π8)cos(π8)
For the following exercises, find the exact value using half-angle formulas.
13. sin(π8)sin(π8)
14. cos(−11π12)cos(−11π12)
15. sin(11π12)sin(11π12)
16. cos(7π8)cos(7π8)
17. tan(5π12)tan(5π12)
18. tan(−3π12)tan(−3π12)
19. tan(−3π8)tan(−3π8)
For the following exercises, find the exact values of a) sin(x2)sin(x2), b) cos(x2)cos(x2), and c) tan(x2)tan(x2) without solving for xx.
20. If tanx=−43tanx=−43, and xx is in quadrant IV.
21. If sinx=−1213sinx=−1213, and xx is in quadrant III.
22. If cscx=7cscx=7, and xx is in quadrant II.
23. If secx=−4secx=−4, and xx is in quadrant II.
For the following exercises, use Figure 5 to find the requested half and double angles.

Figure 5
24. Find sin(2θ),cos(2θ)sin(2θ),cos(2θ), and tan(2θ)tan(2θ).
25. Find sin(2α),cos(2α)sin(2α),cos(2α), and tan(2α)tan(2α).
26. Find sin(θ2),cos(θ2)sin(θ2),cos(θ2), and tan(θ2)tan(θ2).
27. Find sin(α2),cos(α2)sin(α2),cos(α2), and tan(α2)tan(α2).
For the following exercises, simplify each expression. Do not evaluate.
28. cos2(28∘)−sin2(28∘)cos2(28∘)−sin2(28∘)
29. 2cos2(37∘)−12cos2(37∘)−1
30. 1−2sin2(17∘)1−2sin2(17∘)
31. cos2(9x)−sin2(9x)cos2(9x)−sin2(9x)
32. 4sin(8x)cos(8x)4sin(8x)cos(8x)
33. 6sin(5x)cos(5x)6sin(5x)cos(5x)
For the following exercises, prove the identity given.
34. (sint−cost)2=1−sin(2t)(sint−cost)2=1−sin(2t)
35. sin(2x)=−2sin(−x)cos(−x)sin(2x)=−2sin(−x)cos(−x)
36. cotx−tanx=2cot(2x)cotx−tanx=2cot(2x)
37. sin(2θ)1+cos(2θ)tan2θ=tanθsin(2θ)1+cos(2θ)tan2θ=tanθ
For the following exercises, rewrite the expression with an exponent no higher than 1.
38. cos2(5x)cos2(5x)
39. cos2(6x)cos2(6x)
40. sin4(8x)sin4(8x)
41. sin4(3x)sin4(3x)
42. cos2xsin4xcos2xsin4x
43. cos4xsin2xcos4xsin2x
44. tan2xsin2xtan2xsin2x
For the following exercises, reduce the equations to powers of one, and then check the answer graphically.
45. tan4xtan4x
46. sin2(2x)sin2(2x)
47. sin2xcos2xsin2xcos2x
48. tan2xsinxtan2xsinx
49. tan4xcos2xtan4xcos2x
50. cos2xsin(2x)cos2xsin(2x)
51. cos2(2x)sinxcos2(2x)sinx
52. tan2(x2)sinxtan2(x2)sinx
For the following exercises, algebraically find an equivalent function, only in terms of sinxsinx and/or cosxcosx, and then check the answer by graphing both equations.
53. sin(4x)sin(4x)
54. cos(4x)cos(4x)
For the following exercises, prove the identities.
55. sin(2x)=2tanx1+tan2xsin(2x)=2tanx1+tan2x
56. cos(2α)=1−tan2α1+tan2αcos(2α)=1−tan2α1+tan2α
57. tan(2x)=2sinxcosx2cos2x−1tan(2x)=2sinxcosx2cos2x−1
58. (sin2x−1)2=cos(2x)+sin4x(sin2x−1)2=cos(2x)+sin4x
59. sin(3x)=3sinxcos2x−sin3xsin(3x)=3sinxcos2x−sin3x
60. cos(3x)=cos3x−3sin2xcosxcos(3x)=cos3x−3sin2xcosx
61. 1+cos(2t)sin(2t)−cost=2cost2sint−11+cos(2t)sin(2t)−cost=2cost2sint−1
62. sin(16x)=16sinxcosxcos(2x)cos(4x)cos(8x)sin(16x)=16sinxcosxcos(2x)cos(4x)cos(8x)
63. cos(16x)=(cos2(4x)−sin2(4x)−sin(8x))(cos2(4x)−sin2(4x)+sin(8x))cos(16x)=(cos2(4x)−sin2(4x)−sin(8x))(cos2(4x)−sin2(4x)+sin(8x))
Candela Citations
- Precalculus. Authored by: Jay Abramson, et al.. Provided by: OpenStax. Located at: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175:1/Preface. License: CC BY: Attribution. License Terms: Download for free at: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175:1/Preface