Problem Set 53: Double Angle, Half Angle, and Reduction Formulas

1. Explain how to determine the reduction identities from the double-angle identity [latex]\cos \left(2x\right)={\cos }^{2}x-{\sin }^{2}x[/latex].

2. Explain how to determine the double-angle formula for [latex]\tan \left(2x\right)[/latex] using the double-angle formulas for [latex]\cos \left(2x\right)[/latex] and [latex]\sin \left(2x\right)[/latex].

3. We can determine the half-angle formula for [latex]\tan \left(\frac{x}{2}\right)=\frac{\sqrt{1-\cos x}}{\sqrt{1+\cos x}}[/latex] by dividing the formula for [latex]\sin \left(\frac{x}{2}\right)[/latex] by [latex]\cos \left(\frac{x}{2}\right)[/latex]. Explain how to determine two formulas for [latex]\tan \left(\frac{x}{2}\right)[/latex] that do not involve any square roots.

4. For the half-angle formula given in the previous exercise for [latex]\tan \left(\frac{x}{2}\right)[/latex], explain why dividing by 0 is not a concern. (Hint: examine the values of [latex]\cos x[/latex] necessary for the denominator to be 0.)

For the following exercises, find the exact values of a) [latex]\sin \left(2x\right)[/latex], b) [latex]\cos \left(2x\right)[/latex], and c) [latex]\tan \left(2x\right)[/latex] without solving for [latex]x[/latex].

5. If [latex]\sin x=\frac{1}{8}[/latex], and [latex]x[/latex] is in quadrant I.

6. If [latex]\cos x=\frac{2}{3}[/latex], and [latex]x[/latex] is in quadrant I.

7. If [latex]\cos x=-\frac{1}{2}[/latex], and [latex]x[/latex] is in quadrant III.

8. If [latex]\tan x=-8[/latex], and [latex]x[/latex] is in quadrant IV.

For the following exercises, find the values of the six trigonometric functions if the conditions provided hold.

9. [latex]\cos \left(2\theta \right)=\frac{3}{5}[/latex] and [latex]{90}^{\circ }\le \theta \le {180}^{\circ }[/latex]

10. [latex]\cos \left(2\theta \right)=\frac{1}{\sqrt{2}}[/latex] and [latex]{180}^{\circ }\le \theta \le {270}^{\circ }[/latex]

For the following exercises, simplify to one trigonometric expression.

11. [latex]2\sin \left(\frac{\pi }{4}\right)2\cos \left(\frac{\pi }{4}\right)[/latex]

12. [latex]4\sin \left(\frac{\pi }{8}\right)\cos \left(\frac{\pi }{8}\right)[/latex]

For the following exercises, find the exact value using half-angle formulas.

13. [latex]\sin \left(\frac{\pi }{8}\right)[/latex]

14. [latex]\cos \left(-\frac{11\pi }{12}\right)[/latex]

15. [latex]\sin \left(\frac{11\pi }{12}\right)[/latex]

16. [latex]\cos \left(\frac{7\pi }{8}\right)[/latex]

17. [latex]\tan \left(\frac{5\pi }{12}\right)[/latex]

18. [latex]\tan \left(-\frac{3\pi }{12}\right)[/latex]

19. [latex]\tan \left(-\frac{3\pi }{8}\right)[/latex]

For the following exercises, find the exact values of a) [latex]\sin \left(\frac{x}{2}\right)[/latex], b) [latex]\cos \left(\frac{x}{2}\right)[/latex], and c) [latex]\tan \left(\frac{x}{2}\right)[/latex] without solving for [latex]x[/latex].

20. If [latex]\tan x=-\frac{4}{3}[/latex], and [latex]x[/latex] is in quadrant IV.

21. If [latex]\sin x=-\frac{12}{13}[/latex], and [latex]x[/latex] is in quadrant III.

22. If [latex]\csc x=7[/latex], and [latex]x[/latex] is in quadrant II.

23. If [latex]\sec x=-4[/latex], and [latex]x[/latex] is in quadrant II.

For the following exercises, use Figure 5 to find the requested half and double angles.

Image of a right triangle. The base is length 12, and the height is length 5. The angle between the base and the height is 90 degrees, the angle between the base and the hypotenuse is theta, and the angle between the height and the hypotenuse is alpha degrees.

Figure 5

24. Find [latex]\sin \left(2\theta \right),\cos \left(2\theta \right)[/latex], and [latex]\tan \left(2\theta \right)[/latex].

25. Find [latex]\sin \left(2\alpha \right),\cos \left(2\alpha \right)[/latex], and [latex]\tan \left(2\alpha \right)[/latex].

26. Find [latex]\sin \left(\frac{\theta }{2}\right),\cos \left(\frac{\theta }{2}\right)[/latex], and [latex]\tan \left(\frac{\theta }{2}\right)[/latex].

27. Find [latex]\sin \left(\frac{\alpha }{2}\right),\cos \left(\frac{\alpha }{2}\right)[/latex], and [latex]\tan \left(\frac{\alpha }{2}\right)[/latex].

For the following exercises, simplify each expression. Do not evaluate.

28. [latex]{\cos }^{2}\left({28}^{\circ }\right)-{\sin }^{2}\left({28}^{\circ }\right)[/latex]

29. [latex]2{\cos }^{2}\left({37}^{\circ }\right)-1[/latex]

30. [latex]1 - 2{\sin }^{2}\left({17}^{\circ }\right)[/latex]

31. [latex]{\cos }^{2}\left(9x\right)-{\sin }^{2}\left(9x\right)[/latex]

32. [latex]4\sin \left(8x\right)\cos \left(8x\right)[/latex]

33. [latex]6\sin \left(5x\right)\cos \left(5x\right)[/latex]

For the following exercises, prove the identity given.

34. [latex]{\left(\sin t-\cos t\right)}^{2}=1-\sin \left(2t\right)[/latex]

35. [latex]\sin \left(2x\right)=-2\sin \left(-x\right)\cos \left(-x\right)[/latex]

36. [latex]\cot x-\tan x=2\cot \left(2x\right)[/latex]

37. [latex]\frac{\sin \left(2\theta \right)}{1+\cos \left(2\theta \right)}{\tan }^{2}\theta =\tan \theta[/latex]

For the following exercises, rewrite the expression with an exponent no higher than 1.

38. [latex]{\cos }^{2}\left(5x\right)[/latex]

39. [latex]{\cos }^{2}\left(6x\right)[/latex]

40. [latex]{\sin }^{4}\left(8x\right)[/latex]

41. [latex]{\sin }^{4}\left(3x\right)[/latex]

42. [latex]{\cos }^{2}x{\sin }^{4}x[/latex]

43. [latex]{\cos }^{4}x{\sin }^{2}x[/latex]

44. [latex]{\tan }^{2}x{\sin }^{2}x[/latex]

For the following exercises, reduce the equations to powers of one, and then check the answer graphically.

45. [latex]{\tan }^{4}x[/latex]

46. [latex]{\sin }^{2}\left(2x\right)[/latex]

47. [latex]{\sin }^{2}x{\cos }^{2}x[/latex]

48. [latex]{\tan }^{2}x\sin x[/latex]

49. [latex]{\tan }^{4}x{\cos }^{2}x[/latex]

50. [latex]{\cos }^{2}x\sin \left(2x\right)[/latex]

51. [latex]{\cos }^{2}\left(2x\right)\sin x[/latex]

52. [latex]{\tan }^{2}\left(\frac{x}{2}\right)\sin x[/latex]

For the following exercises, algebraically find an equivalent function, only in terms of [latex]\sin x[/latex] and/or [latex]\cos x[/latex], and then check the answer by graphing both equations.

53. [latex]\sin \left(4x\right)[/latex]

54. [latex]\cos \left(4x\right)[/latex]

For the following exercises, prove the identities.

55. [latex]\sin \left(2x\right)=\frac{2\tan x}{1+{\tan }^{2}x}[/latex]

56. [latex]\cos \left(2\alpha \right)=\frac{1-{\tan }^{2}\alpha }{1+{\tan }^{2}\alpha }[/latex]

57. [latex]\tan \left(2x\right)=\frac{2\sin x\cos x}{2{\cos }^{2}x - 1}[/latex]

58. [latex]{\left({\sin }^{2}x - 1\right)}^{2}=\cos \left(2x\right)+{\sin }^{4}x[/latex]

59. [latex]\sin \left(3x\right)=3\sin x{\cos }^{2}x-{\sin }^{3}x[/latex]

60. [latex]\cos \left(3x\right)={\cos }^{3}x - 3{\sin }^{2}x\cos x[/latex]

61. [latex]\frac{1+\cos \left(2t\right)}{\sin \left(2t\right)-\cos t}=\frac{2\cos t}{2\sin t - 1}[/latex]

62. [latex]\sin \left(16x\right)=16\sin x\cos x\cos \left(2x\right)\cos \left(4x\right)\cos \left(8x\right)[/latex]

63. [latex]\cos \left(16x\right)=\left({\cos }^{2}\left(4x\right)-{\sin }^{2}\left(4x\right)-\sin \left(8x\right)\right)\left({\cos }^{2}\left(4x\right)-{\sin }^{2}\left(4x\right)+\sin \left(8x\right)\right)[/latex]