Problem Set 54: Sum-to-Product and Product-to-Sum Formulas

1. Starting with the product to sum formula sinαcosβ=12[sin(α+β)+sin(αβ)], explain how to determine the formula for cosαsinβ.

2. Explain two different methods of calculating cos(195)cos(105), one of which uses the product to sum. Which method is easier?

3. Explain a situation where we would convert an equation from a sum to a product and give an example.

4. Explain a situation where we would convert an equation from a product to a sum, and give an example.

For the following exercises, rewrite the product as a sum or difference.

5. 16sin(16x)sin(11x)

6. 20cos(36t)cos(6t)

7. 2sin(5x)cos(3x)

8. 10cos(5x)sin(10x)

9. sin(x)sin(5x)

10. sin(3x)cos(5x)

For the following exercises, rewrite the sum or difference as a product.

11. cos(6t)+cos(4t)

12. sin(3x)+sin(7x)

13. cos(7x)+cos(7x)

14. sin(3x)sin(3x)

15. cos(3x)+cos(9x)

16. sinhsin(3h)

For the following exercises, evaluate the product for the following using a sum or difference of two functions. Evaluate exactly.

17. cos(45)cos(15)

18. cos(45)sin(15)

19. sin(345)sin(15)

20. sin(195)cos(15)

21. sin(45)sin(15)

For the following exercises, evaluate the product using a sum or difference of two functions. Leave in terms of sine and cosine.

22. cos(23)sin(17)

23. 2sin(100)sin(20)

24. 2sin(100)sin(20)

25. sin(213)cos(8)

26. 2cos(56)cos(47)

For the following exercises, rewrite the sum as a product of two functions. Leave in terms of sine and cosine.

27. sin(76)+sin(14)

28. cos(58)cos(12)

29. sin(101)sin(32)

30. cos(100)+cos(200)

31. sin(1)+sin(2)

For the following exercises, prove the identity.

32. cos(a+b)cos(ab)=1tanatanb1+tanatanb

33. 4sin(3x)cos(4x)=2sin(7x)2sinx

34. 6cos(8x)sin(2x)sin(6x)=3sin(10x)csc(6x)+3

35. sinx+sin(3x)=4sinxcos2x

36. 2(cos3xcosxsin2x)=cos(3x)+cosx

37. 2tanxcos(3x)=secx(sin(4x)sin(2x))

38. cos(a+b)+cos(ab)=2cosacosb

For the following exercises, rewrite the sum as a product of two functions or the product as a sum of two functions. Give your answer in terms of sines and cosines. Then evaluate the final answer numerically, rounded to four decimal places.

39. cos(58)+cos(12)

40. sin(2)sin(3)

41. cos(44)cos(22)

42. cos(176)sin(9)

43. sin(14)sin(85)

For the following exercises, algebraically determine whether each of the given expressions is a true identity. If it is not an identity, replace the right-hand side with an expression equivalent to the left side. Verify the results by graphing both expressions on a calculator.

44. 2sin(2x)sin(3x)=cosxcos(5x)

45. cos(10θ)+cos(6θ)cos(6θ)cos(10θ)=cot(2θ)cot(8θ)

46. sin(3x)sin(5x)cos(3x)+cos(5x)=tanx

47. 2cos(2x)cosx+sin(2x)sinx=2sinx

48. sin(2x)+sin(4x)sin(2x)sin(4x)=tan(3x)cotx

For the following exercises, simplify the expression to one term, then graph the original function and your simplified version to verify they are identical.

49. sin(9t)sin(3t)cos(9t)+cos(3t)

50. 2sin(8x)cos(6x)sin(2x)

51. sin(3x)sinxsinx

52. cos(5x)+cos(3x)sin(5x)+sin(3x)

53. sinxcos(15x)cosxsin(15x)

For the following exercises, prove the following sum-to-product formulas.

54. sinxsiny=2sin(xy2)cos(x+y2)

55. cosx+cosy=2cos(x+y2)cos(xy2)

For the following exercises, prove the identity.

56. sin(6x)+sin(4x)sin(6x)sin(4x)=tan(5x)cotx

57. cos(3x)+cosxcos(3x)cosx=cot(2x)cotx

58. cos(6y)+cos(8y)sin(6y)sin(4y)=cotycos(7y)sec(5y)

59. cos(2y)cos(4y)sin(2y)+sin(4y)=tany

60. sin(10x)sin(2x)cos(10x)+cos(2x)=tan(4x)

61. cosxcos(3x)=4sin2xcosx

62. (cos(2x)cos(4x))2+(sin(4x)+sin(2x))2=4sin2(3x)

63. tan(π4t)=1tant1+tant