1. Describe the three types of symmetry in polar graphs, and compare them to the symmetry of the Cartesian plane.
2. Which of the three types of symmetries for polar graphs correspond to the symmetries with respect to the x-axis, y-axis, and origin?
3. What are the steps to follow when graphing polar equations?
4. Describe the shapes of the graphs of cardioids, limaçons, and lemniscates.
5. What part of the equation determines the shape of the graph of a polar equation?
For the following exercises, test the equation for symmetry.
6. r=5cos3θr=5cos3θ
7. r=3−3cosθr=3−3cosθ
8. r=3+2sinθr=3+2sinθ
9. r=3sin2θr=3sin2θ
10. r=4r=4
11. r=2θr=2θ
12. r=4cosθ2r=4cosθ2
13. r=2θr=2θ
14. r=3√1−cos2θr=3√1−cos2θ
15. r=√5sin2θr=√5sin2θ
For the following exercises, graph the polar equation. Identify the name of the shape.
16. r=3cosθr=3cosθ
17. r=4sinθr=4sinθ
18. r=2+2cosθr=2+2cosθ
19. r=2−2cosθr=2−2cosθ
20. r=5−5sinθr=5−5sinθ
21. r=3+3sinθr=3+3sinθ
22. r=3+2sinθr=3+2sinθ
23. r=7+4sinθr=7+4sinθ
24. r=4+3cosθr=4+3cosθ
25. r=5+4cosθr=5+4cosθ
26. r=10+9cosθr=10+9cosθ
27. r=1+3sinθr=1+3sinθ
28. r=2+5sinθr=2+5sinθ
29. r=5+7sinθr=5+7sinθ
30. r=2+4cosθr=2+4cosθ
31. r=5+6cosθr=5+6cosθ
32. r2=36cos(2θ)r2=36cos(2θ)
33. r2=10cos(2θ)r2=10cos(2θ)
34. r2=4sin(2θ)r2=4sin(2θ)
35. r2=10sin(2θ)r2=10sin(2θ)
36. r=3sin(2θ)r=3sin(2θ)
37. r=3cos(2θ)r=3cos(2θ)
38. r=5sin(3θ)r=5sin(3θ)
39. r=4sin(4θ)r=4sin(4θ)
40. r=4sin(5θ)r=4sin(5θ)
41. r=−θr=−θ
42. r=2θr=2θ
43. r=−3θr=−3θ
For the following exercises, use a graphing calculator to sketch the graph of the polar equation.
44. r=1θr=1θ
45. r=1√θr=1√θ
46. r=2sinθtanθr=2sinθtanθ, a cissoid
47. r=2√1−sin2θr=2√1−sin2θ , a hippopede
48. r=5+cos(4θ)r=5+cos(4θ)
49. r=2−sin(2θ)r=2−sin(2θ)
50. r=θ2r=θ2
51. r=θ+1r=θ+1
52. r=θsinθr=θsinθ
53. r=θcosθr=θcosθ
For the following exercises, use a graphing utility to graph each pair of polar equations on a domain of [0,4π][0,4π] and then explain the differences shown in the graphs.
54. r=θ,r=−θr=θ,r=−θ
55. r=θ,r=θ+sinθr=θ,r=θ+sinθ
56. r=sinθ+θ,r=sinθ−θr=sinθ+θ,r=sinθ−θ
57. r=2sin(θ2),r=θsin(θ2)r=2sin(θ2),r=θsin(θ2)
58. r=sin(cos(3θ))r=sin(3θ)r=sin(cos(3θ))r=sin(3θ)
59. On a graphing utility, graph r=sin(165θ)r=sin(165θ) on [0,4π],[0,8π],[0,12π][0,4π],[0,8π],[0,12π], and [0,16π][0,16π]. Describe the effect of increasing the width of the domain.
60. On a graphing utility, graph and sketch r=sinθ+(sin(52θ))3r=sinθ+(sin(52θ))3 on [0,4π][0,4π].
61. On a graphing utility, graph each polar equation. Explain the similarities and differences you observe in the graphs.
r1=3sin(3θ)r2=2sin(3θ)r3=sin(3θ)r1=3sin(3θ)r2=2sin(3θ)r3=sin(3θ)
62. On a graphing utility, graph each polar equation. Explain the similarities and differences you observe in the graphs.
r1=3+3cosθr2=2+2cosθr3=1+cosθr1=3+3cosθr2=2+2cosθr3=1+cosθ
63. On a graphing utility, graph each polar equation. Explain the similarities and differences you observe in the graphs.
r1=3θr2=2θr3=θr1=3θr2=2θr3=θ
For the following exercises, draw each polar equation on the same set of polar axes, and find the points of intersection.
64. r1=3+2sinθ,r2=2r1=3+2sinθ,r2=2
65. r1=6−4cosθ,r2=4r1=6−4cosθ,r2=4
66. r1=1+sinθ,r2=3sinθr1=1+sinθ,r2=3sinθ
67. r1=1+cosθ,r2=3cosθr1=1+cosθ,r2=3cosθ
68. r1=cos(2θ),r2=sin(2θ)r1=cos(2θ),r2=sin(2θ)
69. r1=sin2(2θ),r2=1−cos(4θ)r1=sin2(2θ),r2=1−cos(4θ)
70. r1=√3,r2=2sin(θ)r1=√3,r2=2sin(θ)
71. r12=sinθ,r22=cosθr12=sinθ,r22=cosθ
72. r1=1+cosθ,r2=1−sinθr1=1+cosθ,r2=1−sinθ
Candela Citations
- Precalculus. Authored by: Jay Abramson, et al.. Provided by: OpenStax. Located at: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175:1/Preface. License: CC BY: Attribution. License Terms: Download for free at: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175:1/Preface