Multiplying Whole Numbers: Properties of Multiplication
Learning Outcomes
Identify and use the multiplication property of zero
Identify and use the identity property of multiplication
Identify and use the commutative property of multiplication
Multiply multiple-digit whole numbers using columns that represent place value
Multiply Whole Numbers
In order to multiply without using models, you need to know all the one digit multiplication facts. Make sure you know them fluently before proceeding in this section. The table below shows the multiplication facts.
Each box shows the product of the number down the left column and the number across the top row. If you are unsure about a product, model it. It is important that you memorize any number facts you do not already know so you will be ready to multiply larger numbers. Start with memorizing the multiplication facts through 9×9. Knowing the times tables up to 12×12 will allow your brain to focus on problem solving in future math questions so you’re not stuck on the arithmetic.
×
0
1
2
3
4
5
6
7
8
9
10
11
12
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
1
2
3
4
5
6
7
8
9
10
11
12
2
0
2
4
6
8
10
12
14
16
18
20
22
24
3
0
3
6
9
12
15
18
21
24
27
30
33
36
4
0
4
8
12
16
20
24
28
32
36
40
44
48
5
0
5
10
15
20
25
30
35
40
45
50
55
60
6
0
6
12
18
24
30
36
42
48
54
60
66
72
7
0
7
14
21
28
35
42
49
56
63
70
77
84
8
0
8
16
24
32
40
48
56
64
72
80
88
96
9
0
9
18
27
36
45
54
63
72
81
90
99
108
10
0
10
20
30
40
50
60
70
80
90
100
110
120
11
0
11
22
33
44
55
66
77
88
99
110
121
132
12
0
12
24
36
48
60
72
84
96
108
120
132
144
What happens when you multiply a number by zero? You can see that the product of any number and zero is zero. This is called the Multiplication Property of Zero.
Multiplication Property of Zero
The product of any number and 0 is 0.
a⋅0=00⋅a=0
example
Multiply:
0⋅11
(42)0
Solution:
1.
0⋅11
The product of any number and zero is zero.
0
2.
(42)0
Multiplying by zero results in zero.
0
try it
What happens when you multiply a number by one? Multiplying a number by one does not change its value. We call this fact the Identity Property of Multiplication, and 1 is called the multiplicative identity.
Identity Property of Multiplication
The product of any number and 1 is the number.
1⋅a=aa⋅1=a
example
Multiply:
(11)1
1⋅42
Show Solution
Solution:
1.
(11)1
The product of any number and one is the number.
11
2.
1⋅42
Multiplying by one does not change the value.
42
try it
Earlier in this chapter, we learned that the Commutative Property of Addition states that changing the order of addition does not change the sum. We saw that 8+9=17 is the same as 9+8=17.
Is this also true for multiplication? Let’s look at a few pairs of factors.
4⋅7=287⋅4=28 9⋅7=637⋅9=63 8⋅9=729⋅8=72
When the order of the factors is reversed, the product does not change. This is called the Commutative Property of Multiplication.
Commutative Property of Multiplication
Changing the order of the factors does not change their product.
a⋅b=b⋅a
example
Multiply:
8⋅7 7⋅8
Show Solution
Solution:
1.
8⋅7
Multiply.
56
2.
7⋅8
Multiply.
56
Changing the order of the factors does not change the product.
try it
To multiply numbers with more than one digit, it is usually easier to write the numbers vertically in columns just as we did for addition and subtraction.
27×3___
We start by multiplying 3 by 7.
3×7=21
We write the 1 in the ones place of the product. We carry the 2 tens by writing 2 above the tens place.
Then we multiply the 3 by the 2, and add the 2 above the tens place to the product. So 3×2=6, and 6+2=8. Write the 8 in the tens place of the product.
The product is 81.
When we multiply two numbers with a different number of digits, it’s usually easier to write the smaller number on the bottom. You could write it the other way, too, but this way is easier to work with.
example
Multiply: 15⋅4
Show Solution
Solution
Write the numbers so the digits 5 and 4 line up vertically.
15×4_____
Multiply 4 by the digit in the ones place of 15. 4⋅5=20.
Write 0 in the ones place of the product and carry the 2 tens.
215×4_____0
Multiply 4 by the digit in the tens place of 15. 4⋅1=4 .Add the 2 tens we carried. 4+2=6 .
Write the 6 in the tens place of the product.
215×4_____60
try it
example
Multiply: 286⋅5
Show Solution
Solution
Write the numbers so the digits 5 and 6 line up vertically.
286×5_____
Multiply 5 by the digit in the ones place of 286.5⋅6=30
Write the 0 in the ones place of the product and carry the 3 to the tens place.Multiply 5 by the digit in the tens place of 286.5⋅8=40
2386×5_____0
Add the 3 tens we carried to get 40+3=43 .Write the 3 in the tens place of the product and carry the 4 to the hundreds place.
42386×5_____30
Multiply 5 by the digit in the hundreds place of 286. 5⋅2=10.Add the 4 hundreds we carried to get 10+4=14.
Write the 4 in the hundreds place of the product and the 1 to the thousands place.
42386×5_____1,430
try it
When we multiply by a number with two or more digits, we multiply by each of the digits separately, working from right to left. Each separate product of the digits is called a partial product. When we write partial products, we must make sure to line up the place values.
Multiply two whole numbers to find the product
Write the numbers so each place value lines up vertically.
Multiply the digits in each place value.
Work from right to left, starting with the ones place in the bottom number.
Multiply the bottom number by the ones digit in the top number, then by the tens digit, and so on.
If a product in a place value is more than 9, carry to the next place value.
Write the partial products, lining up the digits in the place values with the numbers above.
Repeat for the tens place in the bottom number, the hundreds place, and so on.
Insert a zero as a placeholder with each additional partial product.
Add the partial products.
example
Multiply: 62(87)
Show Solution
Solution
Write the numbers so each place lines up vertically.
Start by multiplying 7 by 62. Multiply 7 by the digit in the ones place of 62.7⋅2=14.
Write the 4 in the ones place of the product and carry the 1 to the tens place.
Multiply 7 by the digit in the tens place of 62. 7⋅6=42. Add the 1 ten we carried.42+1=43latex].
Write the 3 in the tens place of the product and the 4 in the hundreds place.
The first partial product is 434.
Now, write a 0 under the 4 in the ones place of the next partial product as a placeholder since we now multiply the digit in the tens place of 87 by 62.Multiply 8 by the digit in the ones place of 62
8⋅2=16. Write the 6 in the next place of the product, which is the tens place. Carry the 1 to the tens place.
Multiply 8 by 6, the digit in the tens place of 62, then add the 1 ten we carried to get 49.Write the 9 in the hundreds place of the product and the 4 in the thousands place.
The second partial product is 4960. Add the partial products.
The product is 5,394.
try it
example
Multiply:
47⋅10
47⋅100
Show Solution
Solution
47⋅10
47×10___00470___470
47⋅100
47×100_____000004700_____4,700
When we multiplied 47 times 10, the product was 470. Notice that 10 has one zero, and we put one zero after 47 to get the product. When we multiplied 47 times 100, the product was 4,700. Notice that 100 has two zeros and we put two zeros after 47 to get the product.
Do you see the pattern? If we multiplied 47 times 10,000, which has four zeros, we would put four zeros after 47 to get the product 470,000.
try it
Multiply:
example
Multiply: (354)(438)
Show Solution
Solution
There are three digits in the factors so there will be 3 partial products. We do not have to write the 0 as a placeholder as long as we write each partial product in the correct place.
try it
example
Multiply: (896)201
Show Solution
Solution
There should be 3 partial products. The second partial product will be the result of multiplying 896 by 0.
Notice that the second partial product of all zeros doesn’t really affect the result. We can place a zero as a placeholder in the tens place and then proceed directly to multiplying by the 2 in the hundreds place, as shown.
Multiply by 10, but insert only one zero as a placeholder in the tens place. Multiply by 200, putting the 2 from the 12. 2⋅6=12 in the hundreds place.
896×201_____89617920__________180,096
try it
When there are three or more factors, we multiply the first two and then multiply their product by the next factor. For example:
to multiply
8⋅3⋅2
first multiply 8⋅3
24⋅2
then multiply 24⋅2
48
In the video below, we summarize the concepts presented on this page including the multiplication property of zero, the identity property of multiplication, and the commutative property of multiplication.
Prealgebra. Provided by: OpenStax. License: CC BY: Attribution. License Terms: Download for free at http://cnx.org/contents/caa57dab-41c7-455e-bd6f-f443cda5519c@9.757
Prealgebra. Provided by: OpenStax. License: CC BY: Attribution. License Terms: Download for free at http://cnx.org/contents/caa57dab-41c7-455e-bd6f-f443cda5519c@9.757