An important example of negative feedback is the control of blood sugar.
- After a meal, the small intestine absorbs glucose from digested food. Blood glucose levels rise.
- Increased blood glucose levels stimulate beta cells in the pancreas to produce insulin.
- Insulin triggers liver, muscle, and fat tissue cells to absorb glucose, where it is stored. As glucose is absorbed, blood glucose levels fall.
- Once glucose levels drop below a threshold, there is no longer a sufficient stimulus for insulin release, and the beta cells stop releasing insulin.
Due to synchronization of insulin release among the beta cells, basal insulin concentration oscillates in the blood following a meal. The oscillations are clinically important, since they are believed to help maintain sensitivity of insulin receptors in target cells. This loss of sensitivity is the basis for insulin resistance. Thus, failure of the negative feedback mechanism can result in high blood glucose levels, which have a variety of negative health effects.
Let’s take a closer look at diabetes. In particular, we will discuss diabetes type 1 and type 2. Diabetes can be caused by too little insulin, resistance to insulin, or both.
Type 1 Diabetes occurs when the pancreatic beta cells are destroyed by an immune-mediated process. Because the pancreatic beta cells sense plasma glucose levels and respond by releasing insulin, individuals with type 1 diabetes have a complete lack of insulin. In this disease, daily injections of insulin are needed.
Also affected are those who lose their pancreas. Once the pancreas has been removed (because of cancer, for example), diabetes type 1 is always present.
Type 2 Diabetes is far more common than type 1. It makes up most of diabetes cases. It usually occurs in adulthood, but young people are increasingly being diagnosed with this disease. In type 2 diabetes, the pancreas still makes insulin, but the tissues do not respond effectively to normal levels of insulin, a condition termed insulin resistance. Over many years the pancreas will decrease the levels of insulin it secretes, but that is not the main problem when the disease initiates. Many people with type 2 diabetes do not know they have it, although it is a serious condition. Type 2 diabetes is becoming more common due to increasing obesity and failure to exercise, both of which contribute to insulin resistance.
Candela Citations
- Homeostasis. Authored by: Open Learning Initiative. Provided by: Carnegie Mellon University. Located at: https://oli.cmu.edu/jcourse/webui/syllabus/module.do?context=43488d9280020ca6007d5b948d182701. Project: Anatomy & Physiology. License: CC BY-NC-SA: Attribution-NonCommercial-ShareAlike