Molecular, Ionic, and Net Ionic Equations

Additional Chemical Equations

The physical states of reactants and products in chemical equations very often are indicated with a parenthetical abbreviation following the formulas. Common abbreviations include s for solids, l for liquids, g for gases, and aq for substances dissolved in water (aqueous solutions, as introduced in the preceding chapter). These notations are illustrated in the example equation here:

[latex]2\text{Na(}s\text{)}+2{\text{H}}_{2}\text{O(}l\text{)}\rightarrow 2\text{NaOH(}aq\text{)}+{\text{H}}_{2}\text{(}g\text{)}[/latex]

This equation represents the reaction that takes place when sodium metal is placed in water. The solid sodium reacts with liquid water to produce molecular hydrogen gas and the ionic compound sodium hydroxide (a solid in pure form, but readily dissolved in water).

Special conditions necessary for a reaction are sometimes designated by writing a word or symbol above or below the equation’s arrow. For example, a reaction carried out by heating may be indicated by the uppercase Greek letter delta (Δ) over the arrow.

[latex]{\text{CaCO}}_{3}\text{(}s\text{)}\stackrel{\Delta}{\rightarrow}\text{CaO(}s\text{)}+{\text{CO}}_{2}\text{(}g\text{)}[/latex]

Other examples of these special conditions will be encountered in more depth in later chapters.

Equations for Ionic Reactions

Given the abundance of water on earth, it stands to reason that a great many chemical reactions take place in aqueous media. When ions are involved in these reactions, the chemical equations may be written with various levels of detail appropriate to their intended use. To illustrate this, consider a reaction between ionic compounds taking place in an aqueous solution. When aqueous solutions of CaCl2 and AgNO3 are mixed, a reaction takes place producing aqueous Ca(NO3)2 and solid AgCl:

[latex]{\text{CaCl}}_{2}\text{(}aq\text{)}+2{\text{AgNO}}_{3}\text{(}aq\text{)}\rightarrow\text{Ca}{\text{(}{\text{NO}}_{3}\text{)}}_{2}\text{(}aq\text{)}+2\text{AgCl(}s\text{)}[/latex]

This balanced equation, derived in the usual fashion, is called a molecular equation, because it doesn’t explicitly represent the ionic species that are present in solution. When ionic compounds dissolve in water, they may dissociate into their constituent ions, which are subsequently dispersed homogenously throughout the resulting solution (a thorough discussion of this important process is provided in the chapter on solutions). Ionic compounds dissolved in water are, therefore, more realistically represented as dissociated ions, in this case:

[latex]\begin{array}{l}{\text{CaCl}}_{2}\text{(}aq\text{)}\rightarrow{\text{Ca}}^{\text{2+}}\text{(}aq\text{)}+2{\text{Cl}}^{-}\text{(}aq\text{)}\\ 2{\text{AgNO}}_{3}\text{(}aq\text{)}\rightarrow 2{\text{Ag}}^{\text{+}}\text{(}aq\text{)}+2{\text{NO}}_{3}{}^{-}\text{(}aq\text{)}\\ \text{Ca}{\text{(}{\text{NO}}_{3}\text{)}}_{2}\text{(}aq\text{)}\rightarrow{\text{Ca}}^{\text{2+}}\text{(}aq\text{)}+2{\text{NO}}_{3}{}^{-}\text{(}aq\text{)}\end{array}[/latex]

Unlike these three ionic compounds, AgCl does not dissolve in water to a significant extent, as signified by its physical state notation, s.

Explicitly representing all dissolved ions results in a complete ionic equation. In this particular case, the formulas for the dissolved ionic compounds are replaced by formulas for their dissociated ions:

[latex]{\text{Ca}}^{\text{2+}}\text{(}aq\text{)}+2{\text{Cl}}^{-}\text{(}aq\text{)}+2{\text{Ag}}^{\text{+}}\text{(}aq\text{)}+2{\text{NO}}_{3}{}^{-}\text{(}aq\text{)}\rightarrow{\text{Ca}}^{\text{2+}}\text{(}aq\text{)}+2{\text{NO}}_{3}{}^{-}\text{(}aq\text{)}+2\text{AgCl(}s\text{)}[/latex]

Examining this equation shows that two chemical species are present in identical form on both sides of the arrow, Ca2+(aq) and [latex]{\text{NO}}_{3}{}^{-}\text{(}aq\text{)}[/latex]. These spectator ions—ions whose presence is required to maintain charge neutrality—are neither chemically nor physically changed by the process, and so they may be eliminated from the equation to yield a more succinct representation called a net ionic equation:

[latex]\begin{array}{c}\cancel{{\text{Ca}}^{\text{2+}}\text{(}aq\text{)}}+2{\text{Cl}}^{-}\text{(}aq\text{)}+2{\text{Ag}}^{\text{+}}\text{(}aq\text{)}+\cancel{2{\text{NO}}_{3}{}^{\text{-}}\text{(}aq\text{)}}\rightarrow\cancel{{\text{Ca}}^{\text{2+}}\text{(}aq\text{)}}+\cancel{2{\text{NO}}_{3}{}^{-}\text{(}aq\text{)}}+2\text{AgCl(}s\text{)}\\ 2{\text{Cl}}^{-}\text{(}aq\text{)}+2{\text{Ag}}^{\text{+}}\text{(}aq\text{)}\rightarrow 2\text{AgCl(}s\text{)}\end{array}[/latex]

Following the convention of using the smallest possible integers as coefficients, this equation is then written:

[latex]{\text{Cl}}^{\text{-}}\text{(}aq\text{)}+{\text{Ag}}^{+}\text{(}aq\text{)}\rightarrow\text{AgCl(}s\text{)}[/latex]

This net ionic equation indicates that solid silver chloride may be produced from dissolved chloride and silver(I) ions, regardless of the source of these ions. These molecular and complete ionic equations provide additional information, namely, the ionic compounds used as sources of Cl and Ag+.

Example 2: Molecular and Ionic Equations

When carbon dioxide is dissolved in an aqueous solution of sodium hydroxide, the mixture reacts to yield aqueous sodium carbonate and liquid water. Write balanced molecular, complete ionic, and net ionic equations for this process.

Check Your Learning

Diatomic chlorine and sodium hydroxide (lye) are commodity chemicals produced in large quantities, along with diatomic hydrogen, via the electrolysis of brine, according to the following unbalanced equation:

[latex]\text{NaCl(}aq\text{)}+{\text{H}}_{2}\text{O(}l\text{)}\,\,\,{\xrightarrow{\text{electricity}}}\,\,\,\text{NaOH(}aq\text{)}+{\text{H}}_{2}\text{(}g\text{)}+{\text{Cl}}_{2}\text{(}g\text{)}[/latex]

Write balanced molecular, complete ionic, and net ionic equations for this process.

Key Concepts and Summary

Chemical equations are symbolic representations of chemical and physical changes. Formulas for the substances undergoing the change (reactants) and substances generated by the change (products) are separated by an arrow and preceded by integer coefficients indicating their relative numbers. Balanced equations are those whose coefficients result in equal numbers of atoms for each element in the reactants and products. Chemical reactions in aqueous solution that involve ionic reactants or products may be represented more realistically by complete ionic equations and, more succinctly, by net ionic equations.

Exercises

  1. What does it mean to say an equation is balanced? Why is it important for an equation to be balanced?
  2. Consider molecular, complete ionic, and net ionic equations.
    1. What is the difference between these types of equations?
    2. In what circumstance would the complete and net ionic equations for a reaction be identical?
  3. Write a balanced molecular equation describing each of the following chemical reactions.
    1. Solid calcium carbonate is heated and decomposes to solid calcium oxide and carbon dioxide gas.
    2. Gaseous butane, C4H10, reacts with diatomic oxygen gas to yield gaseous carbon dioxide and water vapor.
    3. Aqueous solutions of magnesium chloride and sodium hydroxide react to produce solid magnesium hydroxide and aqueous sodium chloride.
    4. Water vapor reacts with sodium metal to produce solid sodium hydroxide and hydrogen gas.
  4. Write a balanced equation describing each of the following chemical reactions.
    1. Solid potassium chlorate, KClO3, decomposes to form solid potassium chloride and diatomic oxygen gas.
    2. Solid aluminum metal reacts with solid diatomic iodine to form solid Al2I6.
    3. When solid sodium chloride is added to aqueous sulfuric acid, hydrogen chloride gas and aqueous sodium sulfate are produced.
    4. Aqueous solutions of phosphoric acid and potassium hydroxide react to produce aqueous potassium dihydrogen phosphate and liquid water.
  5. Colorful fireworks often involve the decomposition of barium nitrate and potassium chlorate and the reaction of the metals magnesium, aluminum, and iron with oxygen.
    1. Write the formulas of barium nitrate and potassium chlorate.
    2. The decomposition of solid potassium chlorate leads to the formation of solid potassium chloride and diatomic oxygen gas. Write an equation for the reaction.
    3. The decomposition of solid barium nitrate leads to the formation of solid barium oxide, diatomic nitrogen gas, and diatomic oxygen gas. Write an equation for the reaction.
    4. Write separate equations for the reactions of the solid metals magnesium, aluminum, and iron with diatomic oxygen gas to yield the corresponding metal oxides. (Assume the iron oxide contains Fe+ ions.)
  6. Fill in the blank with a single chemical formula for a covalent compound that will balance the equation:This figure shows a chemical reaction. On the left side of the reaction arrow, a structural formula for a molecule is shown on the far left. It has a C atom on the left to which H atoms are bonded above, below, and to the left. To the right, another C atom is bonded which has H atoms bonded above and below. To the right, another C atom is bonded, which has a double bonded O atom above and another O atom singly bonded to the right. To the right of the singly bonded O atom, an H atom is bonded. This is followed by a plus sign and N a O H. A reaction arrow appears to the right, which is followed by another structural formula. It has a C atom on the left to which H atoms are bonded above, below, and to the left. To the right, another C atom is bonded which has H atoms bonded above and below. To the right, another C atom is bonded, which has a double bonded O atom above and another O atom singly bonded to the right. The singly bonded O atom is followed by a superscript negative sign. This is followed to the right by a plus sign, N a superscript positive sign, another plus sign, and a horizontal line segment, indicating a space for an answer to be written.
  7. Aqueous hydrogen fluoride (hydrofluoric acid) is used to etch glass and to analyze minerals for their silicon content. Hydrogen fluoride will also react with sand (silicon dioxide).
    1. Write an equation for the reaction of solid silicon dioxide with hydrofluoric acid to yield gaseous silicon tetrafluoride and liquid water.
    2. The mineral fluorite (calcium fluoride) occurs extensively in Illinois. Solid calcium fluoride can also be prepared by the reaction of aqueous solutions of calcium chloride and sodium fluoride, yielding aqueous sodium chloride as the other product. Write complete and net ionic equations for this reaction.
  8. A novel process for obtaining magnesium from sea water involves several reactions. Write a balanced chemical equation for each step of the process.
    1. The first step is the decomposition of solid calcium carbonate from seashells to form solid calcium oxide and gaseous carbon dioxide.
    2. The second step is the formation of solid calcium hydroxide as the only product from the reaction of the solid calcium oxide with liquid water.
    3. Solid calcium hydroxide is then added to the seawater, reacting with dissolved magnesium chloride to yield solid magnesium hydroxide and aqueous calcium chloride.
    4. The solid magnesium hydroxide is added to a hydrochloric acid solution, producing dissolved magnesium chloride and liquid water.
    5. Finally, the magnesium chloride is melted and electrolyzed to yield liquid magnesium metal and diatomic chlorine gas.
  9. From the balanced molecular equations, write the complete ionic and net ionic equations for the following:
    1. [latex]{\text{K}}_{2}{\text{C}}_{2}{\text{O}}_{4}\text{(}aq\text{)}+\text{Ba}{\text{(OH)}}_{2}\text{(}aq\text{)}\rightarrow 2\text{KOH(}aq\text{)}+{\text{BaC}}_{2}{\text{O}}_{2}\text{(}s\text{)}[/latex]
    2. [latex]{\text{Pb(NO}}_{3}{\text{)}}_{2}\text{(}aq\text{)}+{\text{H}}_{2}{\text{SO}}_{4}\text{(}aq\text{)}\rightarrow{\text{PbSO}}_{4}\text{(}s\text{)}+2{\text{HNO}}_{3}\text{(}aq\text{)}[/latex]
    3. [latex]{\text{CaCO}}_{3}\text{(}s\text{)}+{\text{H}}_{2}{\text{SO}}_{4}\text{(}aq\text{)}\rightarrow{\text{CaSO}}_{4}\text{(}s\text{)}+{\text{CO}}_{2}\text{(}g\text{)}+{\text{H}}_{2}\text{O(}l\text{)}[/latex]

Glossary

complete ionic equation: chemical equation in which all dissolved ionic reactants and products, including spectator ions, are explicitly represented by formulas for their dissociated ions

molecular equation: chemical equation in which all reactants and products are represented as neutral substances

net ionic equation: chemical equation in which only those dissolved ionic reactants and products that undergo a chemical or physical change are represented (excludes spectator ions)

spectator ion: ion that does not undergo a chemical or physical change during a reaction, but its presence is required to maintain charge neutrality