Introduction to the Skeletal System

Learning Objectives

  • Describe the functions of the skeletal system.
  • Distinguish between long bones, short bones, flat bones, and irregular bones and provide an example of each.
  • Identify the anatomical features of a long bone
  • Describe the microscopic structure of compact bone, and compare it with that of spongy bone.
  • Identify all the bones of the axial and appendicular skeleton.
  • Describe various skeletal joints and the movements possible
  • Describe the steps involved in bone development and bone repair
  • Describe the effect exercise has on bone tissue
  • Describe the disorders of the skeletal system
  • Describe the effects of hormones on bone tissue, the process of calcium homeostasis

Bone, or osseous tissue, is a hard, dense connective tissue that forms most of the adult skeleton, the support structure of the body. In the areas of the skeleton where bones move (for example, the ribcage and joints), cartilage, a semi-rigid form of connective tissue, provides flexibility and smooth surfaces for movement.

The skeletal system is the body system composed of bones and cartilage and performs the following critical functions for the human body:

  • protection of vital structures, such as the spinal cord, brain, heart, and lungs.
  • support of body structures.
  • body locomotion through coordination with the muscular system.
  • hematopoiesis, or generation of blood cells, within the red marrow spaces of bones.
  • storage and release of the inorganic minerals calcium and phosphorous, which are needed for functions such as muscle contraction and neural signal conduction.

The most apparent functions of the skeletal system are the gross functions—those visible by observation. Simply by looking at a person, you can see how the bones support, facilitate movement, and protect the human body.

This illustration shows how the cranium protects and surrounds the brain. Only the outline of the cranium is visible, which is made transparent to show how the brain sits in the skull. There is a small amount of space between the brain and the cranium but the top and sides of the brain are completely protected by the cranial bones. The bottom of the brain extends below the cranial bones, with the base of the cerebellum seated just above the roof of the mouth. The medulla extends to the bottom of the skull where it meets with the spinal cord.

Figure 1. Bones Protect Brain. The cranium completely surrounds and protects the brain from non-traumatic injury.

Just as the steel beams of a building provide a scaffold to support its weight, the bones and cartilage of your skeletal system compose the scaffold that supports the rest of your body. Without the skeletal system, you would be a limp mass of organs, muscle, and skin.

Bones also facilitate movement by serving as points of attachment for your muscles. While some bones only serve as a support for the muscles, others also transmit the forces produced when your muscles contract. From a mechanical point of view, bones act as levers and joints serve as fulcrums.

Unless a muscle spans a joint and contracts, a bone is not going to move. For information on the interaction of the skeletal and muscular systems, that is, the musculoskeletal system, seek additional content.

Bones also protect internal organs from injury by covering or surrounding them. For example, your ribs protect your lungs and heart, the bones of your vertebral column (spine) protect your spinal cord, and the bones of your cranium (skull) protect your brain (Figure 1).

 

Career Connection: Orthopedist

An orthopedist is a doctor who specializes in diagnosing and treating disorders and injuries related to the musculoskeletal system. Some orthopedic problems can be treated with medications, exercises, braces, and other devices, but others may be best treated with surgery (Figure 2).

This photo shows a man wearing a black arm brace on his upper arm and forearm. The brace is composed of an L shaped metal piece attached to an adjustable joint and four adjustable straps. The joint occurs at the elbow. One of the metal bars projects proximally from the joint up the forearm towards the shoulder. This bar is secured with two black straps to a foam cuff that wraps around the entire upper arm. The other metal bar projects distally from the joint, down the forearm, to the wrist. This bar is secured by two smaller foam wraps, one wrapping around the middle of the forearm and the other wrapping around the wrist.

Figure 2. Arm Brace. An orthopedist will sometimes prescribe the use of a brace that reinforces the underlying bone structure it is being used to support. (credit: Juhan Sonin)

While the origin of the word “orthopedics” (ortho- = “straight”; paed- = “child”), literally means “straightening of the child,” orthopedists can have patients who range from pediatric to geriatric. In recent years, orthopedists have even performed prenatal surgery to correct spina bifida, a congenital defect in which the neural canal in the spine of the fetus fails to close completely during embryologic development.

Orthopedists commonly treat bone and joint injuries but they also treat other bone conditions including curvature of the spine. Lateral curvatures (scoliosis) can be severe enough to slip under the shoulder blade (scapula) forcing it up as a hump. Spinal curvatures can also be excessive dorsoventrally (kyphosis) causing a hunch back and thoracic compression. These curvatures often appear in preteens as the result of poor posture, abnormal growth, or indeterminate causes. Mostly, they are readily treated by orthopedists. As people age, accumulated spinal column injuries and diseases like osteoporosis can also lead to curvatures of the spine, hence the stooping you sometimes see in the elderly.

Some orthopedists sub-specialize in sports medicine, which addresses both simple injuries, such as a sprained ankle, and complex injuries, such as a torn rotator cuff in the shoulder. Treatment can range from exercise to surgery.

Mineral Storage, Energy Storage, and Hematopoiesis

This photo shows the head of the femur detached from the rest of the bone. The compact bone at the surface of the head has been removed to show the spongy bone beneath. Rather than being solid, like the compact bone, the spongy bone is mesh like with many open spaces, giving it the appearance of a sponge. A circle of yellow marrow is located at the exact center of the spongy bone. The red marrow surrounds the yellow marrow, occupying most of the interior space of the head.

Figure 3. Head of Femur Showing Red and Yellow Marrow. The head of the femur contains both yellow and red marrow. Yellow marrow stores fat. Red marrow is responsible for hematopoiesis. (credit: modification of work by “stevenfruitsmaak”/Wikimedia Commons)

On a metabolic level, bone tissue performs several critical functions. For one, the bone matrix acts as a reservoir for a number of minerals important to the functioning of the body, especially calcium, and potassium. These minerals, incorporated into bone tissue, can be released back into the bloodstream to maintain levels needed to support physiological processes. Calcium ions, for example, are essential for muscle contractions and controlling the flow of other ions involved in the transmission of nerve impulses.

Bone also serves as a site for fat storage and blood cell production. The softer connective tissue that fills the interior of most bone is referred to as bone marrow (Figure 3). There are two types of bone marrow: yellow marrow and red marrow. Yellow marrow contains adipose tissue; the triglycerides stored in the adipocytes of the tissue can serve as a source of energy. Red marrow is where hematopoiesis—the production of blood cells—takes place. Red blood cells, white blood cells, and platelets are all produced in the red marrow.

Classify bones according to their shapes

The 206 bones that compose the adult skeleton are divided into five categories based on their shapes (Figure 4). Their shapes and their functions are related such that each categorical shape of bone has a distinct function.

This illustration shows an anterior view of a human skeleton with call outs of five bones. The first call out is the sternum, or breast bone, which lies along the midline of the thorax. The sternum is the bone to which the ribs connect at the front of the body. It is classified as a flat bone and appears somewhat like a tie, with an enlarged upper section and a thin, tapering, lower section. The next callout is the right femur, which is the thigh bone. The inferior end of the femur is broad where it connects to the knee while the superior edge is ball-shaped where it attaches to the hip socket. The femur is an example of a long bone. The next callout is of the patella or kneecap. It is a small, wedge-shaped bone that sits on the anterior side of the knee. The kneecap is an example of a sesamoid bone. The next callout is a dorsal view of the right foot. The lateral, intermediate and medial cuneiform bones are small, square-shaped bones of the top of the foot. These bones lie between the proximal edge of the toe bones and the inferior edge of the shin bones. The lateral cuneiform is proximal to the fourth toe while the medial cuneiform is proximal to the great toe. The intermediate cuneiform lies between the lateral and medial cuneiform. These bones are examples of short bones. The fifth callout shows a superior view of one of the lumbar vertebrae. The vertebra has a kidney-shaped body connected to a triangle of bone that projects above the body of the vertebra. Two spines project off of the triangle at approximately 45 degree angles. The vertebrae are examples of irregular bones.

Figure 4. Classifications of Bones. Bones are classified according to their shape.

Long Bones: A long bone is one that is cylindrical in shape, being longer than it is wide. Keep in mind, however, that the term describes the shape of a bone, not its size. Long bones are found in the arms (humerus, ulna, radius) and legs (femur, tibia, fibula), as well as in the fingers (metacarpals, phalanges) and toes (metatarsals, phalanges). Long bones function as levers; they move when muscles contract.

Short Bones: short bone is one that is cube-like in shape, being approximately equal in length, width, and thickness. The only short bones in the human skeleton are in the carpals of the wrists and the tarsals of the ankles. Short bones provide stability and support as well as some limited motion.

Flat Bones: The term flat bone is somewhat of a misnomer because, although a flat bone is typically thin, it is also often curved. Examples include the cranial (skull) bones, the scapulae (shoulder blades), the sternum (breastbone), and the ribs. Flat bones serve as points of attachment for muscles and often protect internal organs.

Irregular Bones: An irregular bone is one that does not have any easily characterized shape and therefore does not fit any other classification. These bones tend to have more complex shapes, like the vertebrae that support the spinal cord and protect it from compressive forces. Many facial bones, particularly the ones containing sinuses, are classified as irregular bones.

Sesamoid Bones: A sesamoid bone is a small, round bone that, as the name suggests, is shaped like a sesame seed. These bones form in tendons (the sheaths of tissue that connect bones to muscles) where a great deal of pressure is generated in a joint. The sesamoid bones protect tendons by helping them overcome compressive forces. Sesamoid bones vary in number and placement from person to person but are typically found in tendons associated with the feet, hands, and knees. The patellae (singular = patella) are the only sesamoid bones found in common with every person. Table 1 reviews bone classifications with their associated features, functions, and examples.

Table 1. Bone Classifications
Bone classification Features Function(s) Examples
Long Cylinder-like shape, longer than it is wide Leverage Femur, tibia, fibula, metatarsals, humerus, ulna, radius, metacarpals, phalanges
Short Cube-like shape, approximately equal in length, width, and thickness Provide stability, support, while allowing for some motion Carpals, tarsals
Flat Thin and curved Points of attachment for muscles; protectors of internal organs Sternum, ribs, scapulae, cranial bones
Irregular Complex shape Protect internal organs Vertebrae, facial bones
Sesamoid Small and round; embedded in tendons Protect tendons from compressive forces Patellae