Pythagorean Identities |
cos2t+sin2t=11+tan2t=sec2t1+cot2t=csc2t |
Even-Odd Identities |
cos(−t)=cos tsec(−t)=sec tsin(−t)=−sin ttan(−t)=−tan tcsc(−t)=−csc tcot(−t)=−cot t |
Cofunction Identities |
cos t=sin(π2−t)sin t=cos(π2−t)tan t=cot(π2−t)cot t=tan(π2−t)sec t=csc(π2−t)csc t=sec(π2−t) |
Fundamental Identities |
tan t=sin tcos tsec t=1cos tcsc t=1sin tcot t=1tan t=cos tsin t |
Sum and Difference Identities |
cos(α+β)=cos α cos β−sin α sin βcos(α−β)=cos α cos β+sin α sin βsin(α+β)=sin α cos β+cos α sin βsin(α−β)=sin α cos β−cos α sin βtan(α+β)=tan α+tan β1−tan α tan βtan(α−β)=tan α−tan β1+tan α tan β |
Double-Angle Formulas |
sin(2θ)=2 sin θ cos θcos(2θ)=cos2θ−sin2θcos(2θ)=1−2 sin2θcos(2θ)=2 cos2θ−1tan(2θ)=2 tan θ1−tan2θ |
Half-Angle Formulas |
sin α2=±√1−cos α2cos α2=±√1+cos α2tan α2=±√1−cos α1+cos αtan α2=sin α1+cos αtan α2=1−cos αsin α |
Reduction Formulas |
sin2θ=1−cos(2θ)2cos2θ=1+cos(2θ)2tan2θ=1−cos(2θ)1+cos(2θ) |
Product-to-Sum Formulas |
cos α cos β=12[cos(α−β)+cos(α+β)]sin α cos β=12[sin(α+β)+sin(α−β)]sin α sin β=12[cos(α−β)−cos(α+β)]cos α sin β=12[sin(α+β)−sin(α−β)] |
Sum-to-Product Formulas |
sin α+sin β=2 sin(α+β2) cos(α−β2)sin α−sin β=2 sin(α−β2) cos(α+β2)cos α−cos β=−2 sin(α+β2) sin(α−β2)cos α+cos β=2 cos(α+β2) cos(α−β2) |
Law of Sines |
sin αa=sin βb=sin γcasin α=bsin β=csin γ |
Law of Cosines |
a2=b2+c2−2bc cos αb2=a2+c2−2ac cos βc2=a2+b2−2ab cos γ |