Basic Functions and Identities

Graphs of the Parent Functions

Three graphs side-by-side. From left to right, graph of the identify function, square function, and square root function. All three graphs extend from -4 to 4 on each axis.
Three graphs side-by-side. From left to right, graph of the cubic function, cube root function, and reciprocal function. All three graphs extend from -4 to 4 on each axis.
Three graphs side-by-side. From left to right, graph of the absolute value function, exponential function, and natural logarithm function. All three graphs extend from -4 to 4 on each axis.

Graphs of the Trigonometric Functions

Three graphs of trigonometric functions side-by-side. From left to right, graph of the sine function, cosine function, and tangent function. Graphs of the sine and cosine functions extend from negative two pi to two pi on the x-axis and two to negative two on the y-axis. Graph of tangent extends from negative pi to pi on the x-axis and four to negative 4 on the y-axis.
Three graphs of trigonometric functions side-by-side. From left to right, graph of the cosecant function, secant function, and cotangent function. Graphs of the cosecant function and secant function extend from negative two pi to two pi on the x-axis and ten to negative ten on the y-axis. Graph of cotangent extends from negative two pi to two pi on the x-axis and twenty-five to negative twenty-five on the y-axis.
Three graphs of trigonometric functions side-by-side. From left to right, graph of the inverse sine function, inverse cosine function, and inverse tangent function. Graphs of the inverse sine and inverse tangent extend from negative pi over two to pi over two on the x-axis and pi over two to negative pi over two on the y-axis. Graph of inverse cosine extends from negative pi over two to pi on the x-axis and pi to negative pi over two on the y-axis.
Three graphs of trigonometric functions side-by-side. From left to right, graph of the inverse cosecant function, inverse secant function, and inverse cotangent function.

Trigonometric Identities

Pythagorean Identities cos2t+sin2t=11+tan2t=sec2t1+cot2t=csc2t
Even-Odd Identities cos(t)=cos tsec(t)=sec tsin(t)=sin ttan(t)=tan tcsc(t)=csc tcot(t)=cot t
Cofunction Identities cos t=sin(π2t)sin t=cos(π2t)tan t=cot(π2t)cot t=tan(π2t)sec t=csc(π2t)csc t=sec(π2t)
Fundamental Identities tan t=sin tcos tsec t=1cos tcsc t=1sin tcot t=1tan t=cos tsin t
Sum and Difference Identities cos(α+β)=cos α cos βsin α sin βcos(αβ)=cos α cos β+sin α sin βsin(α+β)=sin α cos β+cos α sin βsin(αβ)=sin α cos βcos α sin βtan(α+β)=tan α+tan β1tan α tan βtan(αβ)=tan αtan β1+tan α tan β
Double-Angle Formulas sin(2θ)=2 sin θ cos θcos(2θ)=cos2θsin2θcos(2θ)=12 sin2θcos(2θ)=2 cos2θ1tan(2θ)=2 tan θ1tan2θ
Half-Angle Formulas sin α2=±1cos α2cos α2=±1+cos α2tan α2=±1cos α1+cos αtan α2=sin α1+cos αtan α2=1cos αsin α
Reduction Formulas sin2θ=1cos(2θ)2cos2θ=1+cos(2θ)2tan2θ=1cos(2θ)1+cos(2θ)
Product-to-Sum Formulas cos α cos β=12[cos(αβ)+cos(α+β)]sin α cos β=12[sin(α+β)+sin(αβ)]sin α sin β=12[cos(αβ)cos(α+β)]cos α sin β=12[sin(α+β)sin(αβ)]
Sum-to-Product Formulas sin α+sin β=2 sin(α+β2) cos(αβ2)sin αsin β=2 sin(αβ2) cos(α+β2)cos αcos β=2 sin(α+β2) sin(αβ2)cos α+cos β=2 cos(α+β2) cos(αβ2)
Law of Sines sin αa=sin βb=sin γcasin α=bsin β=csin γ
Law of Cosines a2=b2+c22bc cos αb2=a2+c22ac cos βc2=a2+b22ab cos γ