1.1 Section Exercises

1.1 Section Exercises

Verbal

1. What is the difference between a relation and a function?

2. What is the difference between the input and the output of a function?

3. Why does the vertical line test tell us whether the graph of a relation represents a function?

4. How can you determine if a relation is a one-to-one function?

5. Why does the horizontal line test tell us whether the graph of a function is one-to-one?

Algebraic

For the following exercises, determine whether the relation represents a function.

6. {(a,b), (c,d), (a,c)}

7. {(a,b),(b,c),(c,c)}

For the following exercises, determine whether the relation represents y as a function of x. 

8. 5x+2y=10

9. y=x2

10. x=y2

11. 3x2+y=14

12. 2x+y2=6

13. y=2x2+40x

14. y=1x

15. x=3y+57y1

16. x=1y2

17. y=3x+57x1

18. x2+y2=9

19. 2xy=1

20. x=y3

21. y=x3

22. y=1x2

23. x=±1y

24. y=±1x

25. y2=x2

26. y3=x2

For the following exercises, evaluate the function f at the indicated values f(3),f(2),f(a),f(a),f(a+h).

27. f(x)=2x5

28. f(x)=5x2+2x1

29. f(x)=2x+5

30. f(x)=6x15x+2

31. f(x)=|x1||x+1|

32. Given the function g(x)=5x2, evaluate g(x+h)g(x)h, h0.

33. Given the function g(x)=x2+2x, evaluate g(x)g(a)xa, xa.

34. Given the function k(t)=2t1:

  1. Evaluate k(2).
  2. Solve k(t)=7.

35. Given the function f(x)=83x:

  1. Evaluate f(2).
  2. Solve f(x)=1.

36. Given the function p(c)=c2+c:

  1. Evaluate p(3).
  2. Solve p(c)=2.

37. Given the function f(x)=x23x:

  1. Evaluate f(5).
  2. Solve f(x)=4.

38. Given the function f(x)=x+2:

  1. Evaluate f(7).
  2. Solve f(x)=4.

39. Consider the relationship 3r+2t=18.

  1. Write the relationship as a function r=f(t).
  2. Evaluate f(3).
  3. Solve f(t)=2.

Graphical

For the following exercises, use the vertical line test to determine which graphs show relations that are functions.

40.
 graph of a relation
41. 

42. 
graph of a relation
43. 
graph of a relation

44. 
graph of a relation
45. 
graph of a relation

46. 
graph of a relation
47. 
graph of a relation

48. 
graph of a relation
49. 

50. 
graph of a relation
51. 
graph of a relation

52. Given the following graph,

  • Evaluate f(1).
  • Solve for f(x)=3.

graph of a relation

53. Given the following graph,

  • Evaluate f(0).
  • Solve for f(x)=3.

 

54. Given the following graph,

  • Evaluate f(4).
  • Solve for f(x)=1.

graph of a relation

For the following exercises, determine if the given graph is a one-to-one function.

55. 
graph of a relation

56. 
57. 
graph of a relation

58. 
graph of a relation
59. 
graph of a relation

Numeric

For the following exercises, determine whether the relation represents a function.

60. {(1,1),(2,2),(3,3)}

61. {(3,4),(4,5),(5,6)}

62. {(2,5),(7,11),(15,8),(7,9)}

For the following exercises, determine if the relation represented in table form represents y as a function of x.

63.

x 5 10 15
y 3 8 14

64.

x 5 10 15
y 3 8 8

65.

x 5 10 10
y 3 8 14

For the following exercises, use the function f represented in (Figure).

x f(x)
0 74
1 28
2 1
3 53
4 56
5 3
6 36
7 45
8 14
9 47

66. Evaluate f(3).

67. Solve f(x)=1.

For the following exercises, evaluate the function f at the valuesf(2), f(1), f(0), f(1),and f(2).

68. f(x)=42x

69. f(x)=83x

70. f(x)=8x27x+3

71. f(x)=3+x+3

72. f(x)=x2x+3

73. f(x)=3x

For the following exercises, evaluate the expressions, given functionsf,  g,and h:

  • f(x)=3x2
  • g(x)=5x2
  • h(x)=2x2+3x1

74. 3f(1)4g(2)

75. f(73)h(2)

Technology

For the following exercises, graph y=x2 on the given viewing window. Determine the corresponding range for each viewing window. Show each graph.

76. [0.1, 0.1]

77. [10, 10]

78. [100,100]

For the following exercises, graph y=x3 on the given viewing window. Determine the corresponding range for each viewing window. Show each graph.

79. [0.1, 0.1]

80. [10, 10]

81. [100, 100]

For the following exercises, graph y=x on the given viewing window. Determine the corresponding range for each viewing window. Show each graph.

82. [0, 0.01]

83. [0, 100]

84. [0, 10,000]

For the following exercises, graph y=3x on the given viewing window. Determine the corresponding range for each viewing window. Show each graph.

85. [0.001,0.001]

86. [1000,1000]

87. [1,000,000,1,000,000]

Real-World Applications

88. The amount of garbage, G, produced by a city with population p is given by G=f(p). G is measured in tons per week, and p is measured in thousands of people.

  1. The town of Tola has a population of 40,000 and produces 13 tons of garbage each week. Express this information in terms of the function f. 
  2. Explain the meaning of the statement f(5)=2.

89. The number of cubic yards of dirt, D, needed to cover a garden with area a square feet is given by D=g(a).

  1. A garden with area 5000 ft2 requires 50 yd3 of dirt. Express this information in terms of the function g.
  2. Explain the meaning of the statement g(100)=1.

90. Let f(t) be the number of ducks in a lake t years after 1990. Explain the meaning of each statement:

  1. f(5)=30
  2. f(10)=40

91. Let h(t) be the height above ground, in feet, of a rocket t seconds after launching. Explain the meaning of each statement:

  1. h(1)=200
  2. h(2)=350

92. Show that the function f(x)=3(x5)2+7 is not one-to-one.