3.1 Section Exercises

3.1 Section Exercises

For Exercises 1-10, find the values of all six trigonometric functions of angles A and B in the right triangle △ ABC in Figure 8.

figure 1.2.3 A right triangle with angles A B C and sides a b c

Figure 8. A right triangle with angles A B C and sides a b c

  1. $$a = 5$$, $$b = 12$$, $$c = 13$$
  2. $$a = 8$$, $$b = 15$$, $$c = 17$$
  3. $$a = 7$$, $$b = 24$$, $$c = 25$$
  4. $$a = 20$$, $$b = 21$$, $$c = 29$$
  5. $$a = 9$$, $$b = 40$$, $$c = 41$$
  6. $$a = 1$$, $$b = 2$$, $$c = \sqrt{5}$$
  7. $$a = 1$$, $$b = 3$$
  8. $$a = 2$$, $$b = 5$$
  9. $$a = 5$$, $$c = 6$$
  10. $$b = 7$$, $$c = 8$$

For Exercises 11-18, find the values of the other five trigonometric functions of the acute angle A given the indicated value of one of the functions.

  1. $$\sin\;A = \frac{3}{4}$$
  2. $$\cos\;A = \frac{2}{3}$$
  3. $$\cos\;A = \frac{2}{\sqrt{10}}$$
  4. $$\sin\;A = \frac{2}{4}$$
  5. $$\tan\;A = \frac{5}{9}$$
  6. $$\tan\;A = 3$$
  7. $$\sec\;A = \frac{7}{3}$$
  8. $$\csc\;A = 3$$

For Exercises 19-23, write the given number as a trigonometric function of an acute angle less than 45° .

  1. $$\sin\;87^\circ$$
  2. $$\sin\;53^\circ$$
  3. $$\cos\;46^\circ$$
  4. $$\tan\;66^\circ$$
  5. $$\sec\;77^\circ$$

For Exercises 24-28, write the given number as a trigonometric function of an acute angle greater than 45$$^\circ$$ .

  1. $$\sin\;1^\circ$$
  2. $$\cos\;13^\circ$$
  3. $$\tan\;26^\circ$$
  4. $$\cot\;10^\circ$$
  5. $$\csc\;43^\circ$$
  6. In Example 1.7 we found the values of all six trigonometric functions of 60° and 30° .
    1. Does $$\;\sin\;30^\circ ~+~ \sin\;30^\circ ~=~ \sin\;60^\circ$$?
    2. Does $$\;\cos\;30^\circ ~+~ \cos\;30^\circ ~=~ \cos\;60^\circ$$?
    3. Does $$\;\tan\;30^\circ ~+~ \tan\;30^\circ ~=~ \tan\;60^\circ$$?
    4. Does $$\;2\,\sin\;30^\circ\,\cos\;30^\circ ~=~ \sin\;60^\circ$$?
  7. For an acute angle $$A$$, can $$\sin\;A$$ be larger than $$1$$? Explain your answer.
  8. For an acute angle $$A$$, can $$\cos\;A$$ be larger than $$1$$? Explain your answer.
  9. For an acute angle $$A$$, can $$\sin\;A$$ be larger than $$\tan\;A$$? Explain your answer.
  10. If $$A$$ and $$B$$ are acute angles and $$A < B$$, explain why $$\sin\;A < \sin\;B$$.
  11. If $$A$$ and $$B$$ are acute angles and $$A < B$$, explain why $$\cos\;A > \cos\;B$$.
  12. Prove the Cofunction Theorem. Hint: Draw a right triangle and label the angles and sides.