3.4 Section Exercises

Section Exercises

Verbal

1. Why are the sine and cosine functions called periodic functions?

2. How does the graph of[latex]\text{ }y=\mathrm{sin}\text{ }x\text{ }[/latex] compare with the graph of[latex]\text{ }y=\mathrm{cos}\text{ }x?\text{ }[/latex] Explain how you could horizontally translate the graph of[latex]\text{ }y=\mathrm{sin}\text{ }x\text{ }[/latex] to obtain[latex]\text{ }y=\mathrm{cos}\text{ }x.[/latex]

3. For the equation[latex]\text{ }A\text{ }\mathrm{cos}\left(Bx+C\right)+D,[/latex]what constants affect the range of the function and how do they affect the range?

4. How does the range of a translated sine function relate to the equation[latex]\text{ }y=A\text{ }\mathrm{sin}\left(Bx+C\right)+D?[/latex]

5. How can the unit circle be used to construct the graph of[latex]\text{ }f\left(t\right)=\mathrm{sin}\text{ }t?[/latex]

Graphical

For the following exercises, graph two full periods of each function and state the amplitude, period, and midline. State the maximum and minimum y-values and their corresponding x-values on one period for[latex]\text{ }x>0.\text{ }[/latex]Round answers to two decimal places if necessary.

7. [latex]f\left(x\right)=2\mathrm{sin}\text{ }x[/latex]

8. [latex]f\left(x\right)=\frac{2}{3}\mathrm{cos}\text{ }x[/latex]

9. [latex]f\left(x\right)=-3\mathrm{sin}\text{ }x[/latex]

10. [latex]f\left(x\right)=4\mathrm{sin}\text{ }x[/latex]

11. [latex]f\left(x\right)=2\mathrm{cos}\text{ }x[/latex]

12. [latex]f\left(x\right)=\mathrm{cos}\left(2x\right)[/latex]

13. [latex]f\left(x\right)=2\text{ }\mathrm{sin}\left(\frac{1}{2}x\right)[/latex]

14. [latex]f\left(x\right)=4\text{ }\mathrm{cos}\left(\pi x\right)[/latex]

15. [latex]f\left(x\right)=3\text{ }\mathrm{cos}\left(\frac{6}{5}x\right)[/latex]

16. [latex]y=3\text{ }\mathrm{sin}\left(8\left(x+4\right)\right)+5[/latex]

17. [latex]y=2\text{ }\mathrm{sin}\left(3x-21\right)+4[/latex]

18. [latex]y=5\text{ }\mathrm{sin}\left(5x+20\right)-2[/latex]

For the following exercises, graph one full period of each function, starting at[latex]\text{ }x=0.\text{ }[/latex]For each function, state the amplitude, period, and midline. State the maximum and minimum y-values and their corresponding x-values on one period for[latex]\text{ }x>0.\text{ }[/latex]State the phase shift and vertical translation, if applicable. Round answers to two decimal places if necessary.

19. [latex]f\left(t\right)=2\mathrm{sin}\left(t-\frac{5\pi }{6}\right)[/latex]

20. [latex]f\left(t\right)=-\mathrm{cos}\left(t+\frac{\pi }{3}\right)+1[/latex]

21. [latex]f\left(t\right)=4\mathrm{cos}\left(2\left(t+\frac{\pi }{4}\right)\right)-3[/latex]

22. [latex]f\left(t\right)=-\mathrm{sin}\left(\frac{1}{2}t+\frac{5\pi }{3}\right)[/latex]

23. [latex]f\left(x\right)=4\mathrm{sin}\left(\frac{\pi }{2}\left(x-3\right)\right)+7[/latex]

Determine the amplitude, midline, period, and an equation involving the sine function for the graph shown in (Figure).

A sinusoidal graph with amplitude of 2, range of [-5, -1], period of 4, and midline at y=-3.

24. Determine the amplitude, period, midline, and an equation involving cosine for the graph shown in (Figure).

A graph with a cosine parent function, with amplitude of 3, period of pi, midline at y=-1, and range of [-4,2]

25. Determine the amplitude, period, midline, and an equation involving cosine for the graph shown in (Figure).

A graph with a cosine parent function with an amplitude of 2, period of 5, midline at y=3, and a range of [1,5].

26. Determine the amplitude, period, midline, and an equation involving sine for the graph shown in (Figure).

A sinusoidal graph with amplitude of 4, period of 10, midline at y=0, and range [-4,4].

27. Determine the amplitude, period, midline, and an equation involving cosine for the graph shown in (Figure).

A graph with cosine parent function, range of function is [-4,4], amplitude of 4, period of 2.

28. Determine the amplitude, period, midline, and an equation involving sine for the graph shown in (Figure).

A graph with sine parent function. Amplitude 2, period 2, midline y=0

29. Determine the amplitude, period, midline, and an equation involving cosine for the graph shown in (Figure).

A graph with cosine parent function. Amplitude 2, period 2, midline y=1

30. Determine the amplitude, period, midline, and an equation involving sine for the graph shown in (Figure).

A graph with a sine parent function. Amplitude 1, period 4 and midline y=0.

Algebraic

For the following exercises, let[latex]\text{ }f\left(x\right)=\mathrm{sin}\text{ }x.[/latex]

31. On[latex]\text{ }\left[0,2\pi \right),[/latex]solve[latex]\text{ }f\left(x\right)=0.[/latex]

32. On[latex]\text{ }\left[0,2\pi \right),[/latex]solve[latex]\text{ }f\left(x\right)=\frac{1}{2}.[/latex]

33.Evaluate[latex]\text{ }f\left(\frac{\pi }{2}\right).[/latex]

34. On[latex]\text{ }\left[0,2\pi \right),f\left(x\right)=\frac{\sqrt{2}}{2}.\text{ }[/latex]Find all values of[latex]\text{ }x.[/latex]

35. On[latex]\text{ }\left[0,2\pi \right),[/latex]the maximum value(s) of the function occur(s) at what x-value(s)?

36. On[latex]\text{ }\left[0,2\pi \right),[/latex]the minimum value(s) of the function occur(s) at what x-value(s)?

37. Show that[latex]\text{ }f\left(-x\right)=-f\left(x\right).\text{ }[/latex]This means that[latex]\text{ }f\left(x\right)=\mathrm{sin}\text{ }x\text{ }[/latex]is an odd function and possesses symmetry with respect to ________________.

For the following exercises, let[latex]\text{ }f\left(x\right)=\mathrm{cos}\text{ }x.[/latex]

38. On[latex]\text{ }\left[0,2\pi \right),[/latex]solve the equation[latex]\text{ }f\left(x\right)=\mathrm{cos}\text{ }x=0.[/latex]

39. On[latex]\text{ }\left[0,2\pi \right),[/latex]solve[latex]\text{ }f\left(x\right)=\frac{1}{2}.[/latex]

40. On[latex]\text{ }\left[0,2\pi \right),[/latex]find the x-intercepts of[latex]\text{ }f\left(x\right)=\mathrm{cos}\text{ }x.[/latex]

41. On[latex]\text{ }\left[0,2\pi \right),[/latex]find the x-values at which the function has a maximum or minimum value.

42. On[latex]\text{ }\left[0,2\pi \right),[/latex]solve the equation[latex]\text{ }f\left(x\right)=\frac{\sqrt{3}}{2}.[/latex]

Technology

43. Graph[latex]\text{ }h\left(x\right)=x+\mathrm{sin}\text{ }x\text{ }[/latex]on[latex]\text{ }\left[0,2\pi \right].\text{ }[/latex]Explain why the graph appears as it does.

44. Graph[latex]\text{ }h\left(x\right)=x+\mathrm{sin}\text{ }x\text{ }[/latex]on[latex]\text{ }\left[-100,100\right].\text{ }[/latex]Did the graph appear as predicted in the previous exercise?

45. Graph[latex]\text{ }f\left(x\right)=x\text{ }\mathrm{sin}\text{ }x\text{ }[/latex]on[latex]\text{ }\left[0,2\pi \right]\text{ }[/latex]and verbalize how the graph varies from the graph of[latex]\text{ }f\left(x\right)=\mathrm{sin}\text{ }x.[/latex]

46. Graph[latex]\text{ }f\left(x\right)=x\text{ }\mathrm{sin}\text{ }x\text{ }[/latex]on the window[latex]\text{ }\left[-10,10\right]\text{ }[/latex]and explain what the graph shows.

47. Graph[latex]\text{ }f\left(x\right)=\frac{\mathrm{sin}\text{ }x}{x}\text{ }[/latex]on the window[latex]\text{ }\left[-5\pi ,5\pi \right]\text{ }[/latex]and explain what the graph shows.

Real-World Applications

48. A Ferris wheel is 25 meters in diameter and boarded from a platform that is 1 meter above the ground. The six o’clock position on the Ferris wheel is level with the loading platform. The wheel completes 1 full revolution in 10 minutes. The function[latex]\text{ }h\left(t\right)\text{ }[/latex]gives a person’s height in meters above the ground t minutes after the wheel begins to turn.

  1. Find the amplitude, midline, and period of[latex]\text{ }h\left(t\right).[/latex]
  2. Find a formula for the height function[latex]\text{ }h\left(t\right).[/latex]
  3. How high off the ground is a person after 5 minutes?