3.5 Section Exercises

3.5 Section Exercises

Verbal

1. On an interval of [0,2π), [0,2π), can the sine and cosine values of a radian measure ever be equal? If so, where?

2. What would you estimate the cosine of π  π degrees to be? Explain your reasoning.

3. For any angle in quadrant II, if you knew the sine of the angle, how could you determine the cosine of the angle?

4. Describe the secant function.

5. Tangent and cotangent have a period of π.  π.  What does this tell us about the output of these functions?

Algebraic

For the following exercises, find the exact value of each expression.

6. tan π6tan π6

7. sec π6sec π6

8. csc π6csc π6

9. cot π6cot π6

10. tan π4tan π4

11. sec π4sec π4

12.  csc π4csc π4

13. cot π4cot π4

14. tan π3tan π3

15. sec π3sec π3

16. csc π3csc π3

17. cot π3cot π3

For the following exercises, use reference angles to evaluate the expression.

18. tan 5π6tan 5π6

19. sec 7π6sec 7π6

20. csc 11π6csc 11π6

21. cot 13π6cot 13π6

tan 7π4tan 7π4

sec 3π4sec 3π4

22. csc 5π4csc 5π4

23. cot 11π4cot 11π4

24. tan 8π3tan 8π3

25. sec 4π3sec 4π3

26. csc 2π3csc 2π3

27. cot 5π3cot 5π3

28. tan 225°tan 225°

29. sec 300°sec 300°

30. csc 150°csc 150°

31. cot 240°cot 240°

32. tan 330°tan 330°

33. sec 120°sec 120°

34. csc 210°csc 210°

35. cot 315°cot 315°

36. If sin t=34, sin t=34, and  t   t is in quadrant II, find cos t,sec t,csc t,tan t,cot t. cos t,sec t,csc t,tan t,cot t.

37. If cos t=13, cos t=13, and  t   t is in quadrant III, find sin t,sec t,csc t,tan t,cot t. sin t,sec t,csc t,tan t,cot t.

38. If tan t=125, tan t=125, and 0t<π2, 0t<π2, find sin t,cos t,sec t,csc t, sin t,cos t,sec t,csc t, and  cot t. cot t.

39..If sin t=32  sin t=32 and cos t=12, cos t=12, find sec t,csc t,tan t, sec t,csc t,tan t, and  cot t. cot t.

sec t=2,csc t=233, tan t=3, cot t=33sec t=2,csc t=233, tan t=3, cot t=33

40. If sin 40°0.643  cos 40°0.766  sec 40°,csc 40°,tan 40°,and cot 40°. sin 40°0.643  cos 40°0.766  sec 40°,csc 40°,tan 40°,and cot 40°.

If sin t=22, sin t=22, what is the sin(t)? sin(t)?

41. If cos t=12, cos t=12, what is the cos(t)? cos(t)?

If sec t=3.1, sec t=3.1, what is the sec(t)? sec(t)?

42. If csc t=0.34, csc t=0.34, what is the csc(t)? csc(t)?

43. If tan t=1.4, tan t=1.4, what is the tan(t)? tan(t)?

44. If cot t=9.23, cot t=9.23, what is the cot(t)? cot(t)?

Graphical

For the following exercises, use the angle in the unit circle to find the value of the each of the six trigonometric functions.

45. Graph of circle with angle of t inscribed. Point of (square root of 2 over 2, square root of 2 over 2) is at intersection of terminal side of angle and edge of circle.

46. Graph of circle with angle of t inscribed. Point of (square root of 3 over 2, 1/2) is at intersection of terminal side of angle and edge of circle.
47. Graph of circle with angle of t inscribed. Point of (-1/2, negative square root of 3 over 2) is at intersection of terminal side of angle and edge of circle.

Technology

For the following exercises, use a graphing calculator to evaluate.

48. csc 5π9csc 5π9

49. cot 4π7cot 4π7

50. sec π10sec π10

51. tan 5π8tan 5π8

52. sec 3π4sec 3π4

53. csc π4csc π4

54. tan 98°tan 98°

55. cot 33°cot 33°

56. cot 140°cot 140°

57. sec 310°sec 310°

Extensions

For the following exercises, use identities to evaluate the expression.

58. If tan(t)2.7, tan(t)2.7, and sin(t)0.94, sin(t)0.94, find cos(t). cos(t).

59. If tan(t)1.3, tan(t)1.3, and cos(t)0.61, cos(t)0.61, find sin(t).  sin(t). 

60. If csc(t)3.2, and cos(t)0.95, find tan(t).

61. If cot(t)0.58, and cos(t)0.5, find csc(t).

62. Determine whether the function f(x)=2sin x cos x is even, odd, or neither.

63. Determine whether the function f(x)=3sin2x cos x + sec x is even, odd, or neither.

64. Determine whether the function f(x)=sin x 2cos2x is even, odd, or neither.

65. Determine whether the function f(x)=csc2x+sec x is even, odd, or neither.

For the following exercises, use identities to simplify the expression.

66. csc t tan t

67. sec tcsc t

Real-World Applications

68. The amount of sunlight in a certain city can be modeled by the function h=15cos(1600d), where h represents the hours of sunlight, and d is the day of the year. Use the equation to find how many hours of sunlight there are on February 10, the 42nd day of the year. State the period of the function.

69. The amount of sunlight in a certain city can be modeled by the function  h=16cos(1500d), where h  represents the hours of sunlight, and d  is the day of the year. Use the equation to find how many hours of sunlight there are on September 24, the 267th day of the year. State the period of the function.

70. The equation P=20sin(2πt)+100 models the blood pressure, P, where t represents time in seconds. (a) Find the blood pressure after 15 seconds. (b) What are the maximum and minimum blood pressures?

71. The height of a piston, h, in inches, can be modeled by the equation y=2cos x+6, where x represents the crank angle. Find the height of the piston when the crank angle is 55°. 

72. The height of a piston, h,in inches, can be modeled by the equation y=2cos x+5,where x represents the crank angle. Find the height of the piston when the crank angle is  55°.