3.7 Section Exercises

3.7 Section Exercises

Verbal

1. We know g(x)=cos x is an even function, and f(x)=sin x and h(x)=tan x are odd functions. What about G(x)=cos2x,F(x)=sin2x, and H(x)=tan2x? Are they even, odd, or neither? Why?

2. Examine the graph of f(x)=sec x on the interval [π,π]. How can we tell whether the function is even or odd by only observing the graph of f(x)=sec x?

3. After examining the reciprocal identity for sec t, explain why the function is undefined at certain points.

4. All of the Pythagorean identities are related. Describe how to manipulate the equations to get from sin2t+cos2t=1 to the other forms.

Algebraic

For the following exercises, use the fundamental identities to fully simplify the expression.

5. sin x cos x sec x

6. sin(x)cos(x)csc(x)

7. tan xsin x+sec xcos2x

8. csc x+cos xcot(x)

9. cot t+tan tsec(t)

10. 3 sin3 t csc t+cos2 t+2 cos(t)cos t

11. tan(x)cot(x)

12. sin(x)cos x sec x csc x tan xcot x

13. 1+tan2θcsc2θ+sin2θ+1sec2θ

14. (tan xcsc2x+tan xsec2x)(1+tan x1+cot x)1cos2x

15. 1cos2 xtan2 x+2 sin2 x

For the following exercises, simplify the first trigonometric expression by writing the simplified form in terms of the second expression.

16. tan x+cot xcsc x; cos x

17. sec x+csc x1+tan x; sin x

18. cos x1+sin x+tan x; cos x

19. 1sin xcos xcot x; cot x

20. 11cos xcos x1+cos x; csc x

21. (sec x+csc x)(sin x+cos x)2cot x; tan x

22. 1csc xsin x; sec x and tan x

23. 1sin x1+sin x1+sin x1sin x; sec x and tan x

24. tan x; sec x

25. sec x; cot x

26. sec x; sin x

27. cot x; sin x

28. cot x; csc x

For the following exercises, verify the identity.

29. cos xcos3x=cos x sin2 x

30. cos x(tan xsec(x))=sin x1

31. 1+sin2xcos2x=1cos2x+sin2xcos2x=1+2 tan2x

32. (sin x+cos x)2=1+2 sin xcos x

33. cos2xtan2x=2sin2xsec2x

Extensions

For the following exercises, prove or disprove the identity.

34. 11+cos x11cos(x)=2 cot x csc x

35. csc2x(1+sin2x)=cot2x

36. (sec2(x)tan2xtan x)(2+2 tan x2+2 cot x)2 sin2x=cos 2x

37. tan xsec xsin(x)=cos2x

38. sec(x)tan x+cot x=sin(x)

39. 1+sin xcos x=cos x1+sin(x)

For the following exercises, determine whether the identity is true or false. If false, find an appropriate equivalent expression.

40. cos2θsin2θ1tan2θ=sin2θ

41. 3 sin2θ+4 cos2θ=3+cos2θ

42. sec θ+tan θcot θ+cos θ=sec2θ

3.7 More Section Exercises

Verbal

1. Will there always be solutions to trigonometric function equations? If not, describe an equation that would not have a solution. Explain why or why not.

2. When solving a trigonometric equation involving more than one trig function, do we always want to try to rewrite the equation so it is expressed in terms of one trigonometric function? Why or why not?

3. When solving linear trig equations in terms of only sine or cosine, how do we know whether there will be solutions?

Algebraic

For the following exercises, find all solutions exactly on the interval 0θ<2π.

4. 2 sin θ=2

5. 2 sin θ=3

6. 2 cos θ=1

7. 2 cos θ=2

8. tan θ=1

9. tan x=1

10. cot x+1=0

11. 4 sin2x2=0

12. csc2x4=0

For the following exercises, solve exactly on [0,2π).

13. 2 cos θ=2

14. 2 cos θ=1

15. 2 sin θ=1

16. 2 sin θ=3

17. 2 sin(3θ)=1

18. 2 sin(2θ)=3

19. 2 cos(3θ)=2

20. cos(2θ)=32

21. 2 sin(πθ)=1

22. 2 cos(π5θ)=3

For the following exercises, find all exact solutions on [0,2π).

23. sec(x)sin(x)2 sin(x)=0

24. tan(x)2 sin(x)tan(x)=0

25. 2 cos2t+cos(t)=1

26. 2 tan2(t)=3 sec(t)

27. 2 sin(x)cos(x)sin(x)+2 cos(x)1=0

28. cos2θ=12

29. sec2x=1

30. tan2(x)=1+2 tan(x)

31. 8 sin2(x)+6 sin(x)+1=0

32. tan5(x)=tan(x)

For the following exercises, solve with the methods shown in this section exactly on the interval [0,2π).

33. sin(3x)cos(6x)cos(3x)sin(6x)=0.9

34. sin(6x)cos(11x)cos(6x)sin(11x)=0.1

35. cos(2x)cos x+sin(2x)sin x=1

36. 6 sin(2t)+9 sin t=0

37. 9 cos(2θ)=9 cos2θ4

38. sin(2t)=cos t

39. cos(2t)=sin t

40. cos(6x)cos(3x)=0

For the following exercises, solve exactly on the interval [0,2π). Use the quadratic formula if the equations do not factor.

41. tan2x3 tan x=0

42. sin2x+sin x2=0

43. sin2x2 sin x4=0

44. 5 cos2x+3 cos x1=0

45. 3 cos2x2 cos x2=0

46. 5 sin2x+2 sin x1=0

47. tan2x+5tan x1=0

48. cot2x=cot x

49. tan2xtan x2=0

For the following exercises, find exact solutions on the interval [0,2π). Look for opportunities to use trigonometric identities.

50. sin2xcos2xsin x=0

51. sin2x+cos2x=0

52. sin(2x)sin x=0

53. cos(2x)cos x=0

54. 2 tan x2sec2xsin2x=cos2x

55. 1cos(2x)=1+cos(2x)

56. sec2x=7

57. 10 sin x cos x=6 cos x

58. 3 sin t=15 cos t sin t

59. 4 cos2x4=15 cos x

60. 8 sin2x+6 sin x+1=0

61. 8 cos2θ=32 cos θ

62. 6 cos2x+7 sin x8=0

63. 12 sin2t+cos t6=0

64. tan x=3 sin x

65. cos3t=cos t

Graphical

For the following exercises, algebraically determine all solutions of the trigonometric equation exactly, then verify the results by graphing the equation and finding the zeros.

66. 6 sin2x5 sin x+1=0

67. 8 cos2x2 cos x1=0

68. 100 tan2x+20 tan x3=0

69. 2 cos2xcos x+15=0

70. 20 sin2x27 sin x+7=0

71. 2 tan2x+7 tan x+6=0

72. 130 tan2x+69 tan x130=0

Technology

For the following exercises, use a calculator to find all solutions to four decimal places.

73. sin x=0.27

74. sin x=0.55

75. tan x=0.34

76. cos x=0.71

For the following exercises, solve the equations algebraically, and then use a calculator to find the values on the interval [0,2π). Round to four decimal places.

77. tan2x+3 tan x3=0

78. 6 tan2x+13 tan x=6

79. tan2xsec x=1

80. sin2x2 cos2x=0

81. 2 tan2x+9 tan x6=0

82. 4 sin2x+sin(2x)sec x3=0

Extensions

For the following exercises, find all solutions exactly to the equations on the interval [0,2π).

83. csc2x3 csc x4=0

84. sin2xcos2x1=0

85. sin2x(1sin2x)+cos2x(1sin2x)=0

86. 3 sec2x+2+sin2xtan2x+cos2x=0

87. sin2x1+2 cos(2x)cos2x=1

88. tan2x1sec3x cos x=0

89. sin(2x)sec2x=0

90. sin(2x)2csc2x=0

91. 2 cos2xsin2xcos x5=0

92. 1sec2x+2+sin2x+4 cos2x=4

Real-World Applications

93. An airplane has only enough gas to fly to a city 200 miles northeast of its current location. If the pilot knows that the city is 25 miles north, how many degrees north of east should the airplane fly?

94. If a loading ramp is placed next to a truck, at a height of 4 feet, and the ramp is 15 feet long, what angle does the ramp make with the ground?

95. If a loading ramp is placed next to a truck, at a height of 2 feet, and the ramp is 20 feet long, what angle does the ramp make with the ground?

96. A woman is watching a launched rocket currently 11 miles in altitude. If she is standing 4 miles from the launch pad, at what angle is she looking up from horizontal?

97. An astronaut is in a launched rocket currently 15 miles in altitude. If a man is standing 2 miles from the launch pad, at what angle is she looking down at him from horizontal? (Hint: this is called the angle of depression.)

98. A woman is standing 8 meters away from a 10-meter tall building. At what angle is she looking to the top of the building?

99. A man is standing 10 meters away from a 6-meter tall building. Someone at the top of the building is looking down at him. At what angle is the person looking at him?

100. A 20-foot tall building has a shadow that is 55 feet long. What is the angle of elevation of the sun?

101. A 90-foot tall building has a shadow that is 2 feet long. What is the angle of elevation of the sun?

102. A spotlight on the ground 3 meters from a 2-meter tall man casts a 6 meter shadow on a wall 6 meters from the man. At what angle is the light?

103. A spotlight on the ground 3 feet from a 5-foot tall woman casts a 15-foot tall shadow on a wall 6 feet from the woman. At what angle is the light?

For the following exercises, find a solution to the word problem algebraically. Then use a calculator to verify the result. Round the answer to the nearest tenth of a degree.

104. A person does a handstand with his feet touching a wall and his hands 1.5 feet away from the wall. If the person is 6 feet tall, what angle do his feet make with the wall?

105. A person does a handstand with her feet touching a wall and her hands 3 feet away from the wall. If the person is 5 feet tall, what angle do her feet make with the wall?

106. A 23-foot ladder is positioned next to a house. If the ladder slips at 7 feet from the house when there is not enough traction, what angle should the ladder make with the ground to avoid slipping?