Chapter Review Exercises
True or False. In the following exercises, justify your answer with a proof or a counterexample.
A function has to be continuous at [latex]x=a[/latex] if the [latex]\underset{x\to a}{\text{lim}}f(x)[/latex] exists.
You can use the quotient rule to evaluate [latex]\underset{x\to 0}{\text{lim}}\frac{ \sin x}{x}.[/latex]
If there is a vertical asymptote at [latex]x=a[/latex] for the function [latex]f(x),[/latex] then [latex]f[/latex] is undefined at the point [latex]x=a.[/latex]
If [latex]\underset{x\to a}{\text{lim}}f(x)[/latex] does not exist, then [latex]f[/latex] is undefined at the point [latex]x=a.[/latex]
Using the graph, find each limit or explain why the limit does not exist.
- [latex]\underset{x\to -1}{\text{lim}}f(x)[/latex]
- [latex]\underset{x\to 1}{\text{lim}}f(x)[/latex]
- [latex]\underset{x\to {0}^{+}}{\text{lim}}f(x)[/latex]
- [latex]\underset{x\to 2}{\text{lim}}f(x)[/latex]
In the following exercises, evaluate the limit algebraically or explain why the limit does not exist.
[latex]\underset{x\to 2}{\text{lim}}\frac{2{x}^{2}-3x-2}{x-2}[/latex]
[latex]\underset{x\to 0}{\text{lim}}3{x}^{2}-2x+4[/latex]
[latex]\underset{x\to 3}{\text{lim}}\frac{{x}^{3}-2{x}^{2}-1}{3x-2}[/latex]
[latex]\underset{x\to \pi \text{/}2}{\text{lim}}\frac{ \cot x}{ \cos x}[/latex]
[latex]\underset{x\to -5}{\text{lim}}\frac{{x}^{2}+25}{x+5}[/latex]
[latex]\underset{x\to 2}{\text{lim}}\frac{3{x}^{2}-2x-8}{{x}^{2}-4}[/latex]
[latex]\underset{x\to 1}{\text{lim}}\frac{{x}^{2}-1}{{x}^{3}-1}[/latex]
[latex]\underset{x\to 1}{\text{lim}}\frac{{x}^{2}-1}{\sqrt{x}-1}[/latex]
[latex]\underset{x\to 4}{\text{lim}}\frac{4-x}{\sqrt{x}-2}[/latex]
[latex]\underset{x\to 4}{\text{lim}}\frac{1}{\sqrt{x}-2}[/latex]
In the following exercises, use the squeeze theorem to prove the limit.
[latex]\underset{x\to 0}{\text{lim}}{x}^{2} \cos (2\pi x)=0[/latex]
[latex]\underset{x\to 0}{\text{lim}}{x}^{3} \sin (\frac{\pi }{x})=0[/latex]
Determine the domain such that the function [latex]f(x)=\sqrt{x-2}+x{e}^{x}[/latex] is continuous over its domain.
In the following exercises, determine the value of [latex]c[/latex] such that the function remains continuous. Draw your resulting function to ensure it is continuous.
[latex]f(x)=\bigg\{\begin{array}{l}{x}^{2}+1,x>c\\ 2x,x\le c\end{array}[/latex]
[latex]f(x)=\bigg\{\begin{array}{l}\sqrt{x+1},x>\text{−}1\\ {x}^{2}+c,x\le -1\end{array}[/latex]
In the following exercises, use the precise definition of limit to prove the limit.
[latex]\underset{x\to 1}{\text{lim}}(8x+16)=24[/latex]
[latex]\underset{x\to 0}{\text{lim}}{x}^{3}=0[/latex]
A ball is thrown into the air and the vertical position is given by [latex]x(t)=-4.9{t}^{2}+25t+5.[/latex] Use the Intermediate Value Theorem to show that the ball must land on the ground sometime between 5 sec and 6 sec after the throw.
A particle moving along a line has a displacement according to the function [latex]x(t)={t}^{2}-2t+4,[/latex] where [latex]x[/latex] is measured in meters and [latex]t[/latex] is measured in seconds. Find the average velocity over the time period [latex]t=\left[0,2\right].[/latex]
From the previous exercises, estimate the instantaneous velocity at [latex]t=2[/latex] by checking the average velocity within [latex]t=0.01 \sec \text{.}[/latex]