It used to be a widely held belief by prominent literacy theorists, such as Goodman (1967), that learning to read, like learning to talk, is a natural process. It was thought that since children learn language and how to speak just by virtue of being spoken to, reading to and with children should naturally lead to learning to read, or recognize, words. Now we know it is not natural, even though it seems that some children “pick up reading” like a bird learns to fly. The human brain is wired from birth for speech, but this is not the case for reading the printed word. This is because what we read—our alphabetic script—is an invention, only available to humankind for the last 3,800 years (Dehaene, 2009). As a result, our brains have had to accommodate a new pathway to translate the squiggles that are our letters into the sounds of our spoken words that they symbolize. This seemingly simple task is, in actuality, a complex feat.
The alphabet is an amazing invention that allows us to represent both old and new words and ideas with just a few symbols. Despite its efficiency and simplicity, the alphabet is actually the root cause of reading difficulties for many people. The letters that make up our alphabet represent phonemes—individual speech sounds—or according to Dehaene, “atoms” of spoken words (as opposed to other scripts like Chinese whereby the characters represent larger units of speech such as syllables or whole words). Individual speech sounds in spoken words (phonemes) are difficult to notice for approximately 25% to 40% of children (Adams, Foorman, Lundberg, & Beeler, 1998). In fact, for some children, the ability to notice, or become aware of the individual sounds in spoken words (phoneme awareness) proves to be one of the most difficult academic tasks they will ever encounter. If we were to ask, “How many sounds do you hear when I say ‘gum’?” some children may answer that they hear only one, because when we say the word “gum,” the sounds of /g/ /u/ and /m/ are seamless. (Note the / / marks denote the sound made by a letter.) This means that the sounds are coarticulated; they overlap and melt into each other, forming an enveloped, single unit—the spoken word “gum.” There are no crisp boundaries between the sounds when we say the word “gum.” The /g/ sound folds into the /u/ sound, which then folds into the /m/ sound, with no breaks in between.
So why the difficulty and where does much of it begin? Our speech consists of whole words, but we write those words by breaking them down into their phonemes and representing each phoneme with letters. To read and write using our alphabetic script, children must first be able to notice and disconnect each of the sounds in spoken words. They must blend the individual sounds together to make a whole word (read). And they must segment the individual sounds to represent each with alphabetic letters (spell and write). This is the first stumbling block for so many in their literacy journeys—a difficulty in phoneme awareness simply because their brains happen to be wired in such a way as to make the sounds hard to notice. Research, through the use of brain imaging and various clever experiments, has shown how the brain must “teach itself” to accommodate this alphabet by creating a pathway between multiple areas (Dehaene, 2009).
Instruction incorporating phoneme awareness is likely to facilitate successful reading (Adams et al., 1998; Snow, Burns, & Griffin, 1998), and it is for this reason that it is a focus in early school experiences. For some children, phoneme awareness, along with exposure to additional fundamentals, such as how to hold a book, the concept of a word or sentence, or knowledge of the alphabet, may be learned before formal schooling begins. In addition to having such print experiences, oral experiences such as being talked to and read to within a literacy rich environment help to set the stage for reading. Children lacking these literacy experiences prior to starting school must rely heavily on their teachers to provide them.