Learning Objectives
In this section, you will:
- Use double-angle formulas to find exact values.
- Use double-angle formulas to verify identities.
- Use reduction formulas to simplify an expression.
- Use half-angle formulas to find exact values.

Figure 1. Bicycle ramps for advanced riders have a steeper incline than those designed for novices.
Bicycle ramps made for competition (see (Figure)) must vary in height depending on the skill level of the competitors. For advanced competitors, the angle formed by the ramp and the ground should beθθsuch thattanθ=53.tanθ=53.The angle is divided in half for novices. What is the steepness of the ramp for novices? In this section, we will investigate three additional categories of identities that we can use to answer questions such as this one.
Using Double-Angle Formulas to Find Exact Values
In the previous section, we used addition and subtraction formulas for trigonometric functions. Now, we take another look at those same formulas. The double-angle formulas are a special case of the sum formulas, whereα=β.α=β.Deriving the double-angle formula for sine begins with the sum formula,
If we letα=β=θ,α=β=θ,then we have
Deriving the double-angle for cosine gives us three options. First, starting from the sum formula,cos(α+β)=cosαcosβ−sinαsinβ,cos(α+β)=cosαcosβ−sinαsinβ,and lettingα=β=θ,α=β=θ,we have
Using the Pythagorean properties, we can expand this double-angle formula for cosine and get two more variations. The first variation is:
The second variation is:
Similarly, to derive the double-angle formula for tangent, replacingα=β=θα=β=θin the sum formula gives
Double-Angle Formulas
The double-angle formulas are summarized as follows:
How To
Given the tangent of an angle and the quadrant in which it is located, use the double-angle formulas to find the exact value.
- Draw a triangle to reflect the given information.
- Determine the correct double-angle formula.
- Substitute values into the formula based on the triangle.
- Simplify.
Using a Double-Angle Formula to Find the Exact Value Involving Tangent
Given thattanθ=−34tanθ=−34andθθis in quadrant II, find the following:
- sin(2θ)sin(2θ)
- cos(2θ)cos(2θ)
- tan(2θ)tan(2θ)
Try It
Givensinα=58,sinα=58,withθθin quadrant I, findcos(2α).cos(2α).
Using the Double-Angle Formula for Cosine without Exact Values
Use the double-angle formula for cosine to writecos(6x)cos(6x)in terms ofcos(3x).cos(3x).
Analysis
This example illustrates that we can use the double-angle formula without having exact values. It emphasizes that the pattern is what we need to remember and that identities are true for all values in the domain of the trigonometric function.
Using Double-Angle Formulas to Verify Identities
Establishing identities using the double-angle formulas is performed using the same steps we used to derive the sum and difference formulas. Choose the more complicated side of the equation and rewrite it until it matches the other side.
Using the Double-Angle Formulas to Verify an Identity
Verify the following identity using double-angle formulas:
Analysis
This process is not complicated, as long as we recall the perfect square formula from algebra:
wherea=sinθandb=cosθ.Part of being successful in mathematics is the ability to recognize patterns. While the terms or symbols may change, the algebra remains consistent.
Try It
Verify the identity:cos4θ−sin4θ=cos(2θ).
Verifying a Double-Angle Identity for Tangent
Verify the identity:
Analysis
Here is a case where the more complicated side of the initial equation appeared on the right, but we chose to work the left side. However, if we had chosen the left side to rewrite, we would have been working backwards to arrive at the equivalency. For example, suppose that we wanted to show
Let’s work on the right side.
When using the identities to simplify a trigonometric expression or solve a trigonometric equation, there are usually several paths to a desired result. There is no set rule as to what side should be manipulated. However, we should begin with the guidelines set forth earlier.
Try It
Verify the identity:cos(2θ)cosθ=cos3θ−cosθsin2θ.
Use Reduction Formulas to Simplify an Expression
The double-angle formulas can be used to derive the reduction formulas, which are formulas we can use to reduce the power of a given expression involving even powers of sine or cosine. They allow us to rewrite the even powers of sine or cosine in terms of the first power of cosine. These formulas are especially important in higher-level math courses, calculus in particular. Also called the power-reducing formulas, three identities are included and are easily derived from the double-angle formulas.
We can use two of the three double-angle formulas for cosine to derive the reduction formulas for sine and cosine. Let’s begin withcos(2θ)=1−2sin2θ.Solve forsin2θ:
Next, we use the formulacos(2θ)=2cos2θ−1.Solve forcos2θ:
The last reduction formula is derived by writing tangent in terms of sine and cosine:
Reduction Formulas
The reduction formulas are summarized as follows:
Writing an Equivalent Expression Not Containing Powers Greater Than 1
Write an equivalent expression forcos4xthat does not involve any powers of sine or cosine greater than 1.
Analysis
The solution is found by using the reduction formula twice, as noted, and the perfect square formula from algebra.
Using the Power-Reducing Formulas to Prove an Identity
Use the power-reducing formulas to prove
Analysis
Note that in this example, we substituted
forsin2(2x).The formula states
We letθ=2x,so2θ=4x.
Try It
Use the power-reducing formulas to prove that10cos4x=154+5cos(2x)+54cos(4x).
Using Half-Angle Formulas to Find Exact Values
The next set of identities is the set of half-angle formulas, which can be derived from the reduction formulas and we can use when we have an angle that is half the size of a special angle. If we replaceθwithα2,the half-angle formula for sine is found by simplifying the equation and solving forsin(α2).Note that the half-angle formulas are preceded by a±sign. This does not mean that both the positive and negative expressions are valid. Rather, it depends on the quadrant in whichα2terminates.
The half-angle formula for sine is derived as follows:
To derive the half-angle formula for cosine, we have
For the tangent identity, we have
Half-Angle Formulas
The half-angle formulas are as follows:
Using a Half-Angle Formula to Find the Exact Value of a Sine Function
Findsin(15°)using a half-angle formula.
Analysis
Notice that we used only the positive root becausesin(15°)is positive.
How To
Given the tangent of an angle and the quadrant in which the angle lies, find the exact values of trigonometric functions of half of the angle.
- Draw a triangle to represent the given information.
- Determine the correct half-angle formula.
- Substitute values into the formula based on the triangle.
- Simplify.
Finding Exact Values Using Half-Angle Identities
Given thattanα=815 andαlies in quadrant III, find the exact value of the following:
- sin(α2)
- cos(α2)
- tan(α2)
Try It
Given thatsinα=−45andαlies in quadrant IV, find the exact value ofcos(α2).
Finding the Measurement of a Half Angle
Now, we will return to the problem posed at the beginning of the section. A bicycle ramp is constructed for high-level competition with an angle ofθformed by the ramp and the ground. Another ramp is to be constructed half as steep for novice competition. Iftanθ=53for higher-level competition, what is the measurement of the angle for novice competition?
Access these online resources for additional instruction and practice with double-angle, half-angle, and reduction formulas.
Key Equations
Double-angle formulas | sin(2θ)=2sinθcosθcos(2θ)=cos2θ−sin2θ=1−2sin2θ=2cos2θ−1tan(2θ)=2tanθ1−tan2θ |
Reduction formulas | sin2θ=1−cos(2θ)2cos2θ=1+cos(2θ)2tan2θ=1−cos(2θ)1+cos(2θ) |
Half-angle formulas | sinα2=±√1−cosα2cosα2=±√1+cosα2tanα2=±√1−cosα1+cosα=sinα1+cosα=1−cosαsinα |
Key Concepts
- Double-angle identities are derived from the sum formulas of the fundamental trigonometric functions: sine, cosine, and tangent. See (Figure), (Figure), (Figure), and (Figure).
- Reduction formulas are especially useful in calculus, as they allow us to reduce the power of the trigonometric term. See (Figure) and (Figure).
- Half-angle formulas allow us to find the value of trigonometric functions involving half-angles, whether the original angle is known or not. See (Figure), (Figure), and (Figure).
Section Exercises
Verbal
Explain how to determine the reduction identities from the double-angle identitycos(2x)=cos2x−sin2x.
Explain how to determine the double-angle formula fortan(2x)using the double-angle formulas forcos(2x)andsin(2x).
We can determine the half-angle formula fortan(x2)=√1−cosx√1+cosxby dividing the formula forsin(x2)bycos(x2).Explain how to determine two formulas fortan(x2) that do not involve any square roots.
For the half-angle formula given in the previous exercise fortan(x2),explain why dividing by 0 is not a concern. (Hint: examine the values ofcosxnecessary for the denominator to be 0.)
Algebraic
For the following exercises, find the exact values of a)sin(2x), b)cos(2x), and c)tan(2x)without solving forx.
Ifsinx=18,andxis in quadrant I.
Ifcosx=23,andxis in quadrant I.
Ifcosx=−12,andxis in quadrant III.
Iftanx=−8,andxis in quadrant IV.
For the following exercises, find the values of the six trigonometric functions if the conditions provided hold.
cos(2θ)=35and90°≤θ≤180°
cos(2θ)=1√2and180°≤θ≤270°
For the following exercises, simplify to one trigonometric expression.
2sin(π4)2cos(π4)
4sin(π8)cos(π8)
For the following exercises, find the exact value using half-angle formulas.
sin(π8)
cos(−11π12)
sin(11π12)
cos(7π8)
tan(5π12)
tan(−3π12)
tan(−3π8)
For the following exercises, find the exact values of a)sin(x2), b)cos(x2), and c)tan(x2)without solving forx,when0°≤x≤360°.
Iftanx=−43,andxis in quadrant IV.
Ifsinx=−1213,andxis in quadrant III.
Ifcscx=7,andxis in quadrant II.
Ifsecx=−4,andxis in quadrant II.
For the following exercises, use (Figure) to find the requested half and double angles.

Figure 5.
Findsin(2θ),cos(2θ),andtan(2θ).
Findsin(2α),cos(2α),andtan(2α).
Findsin(θ2),cos(θ2),andtan(θ2).
Findsin(α2),cos(α2),andtan(α2).
For the following exercises, simplify each expression. Do not evaluate.
cos2(28°)−sin2(28°)
2cos2(37°)−1
1−2sin2(17°)
cos2(9x)−sin2(9x)
4sin(8x)cos(8x)
6sin(5x)cos(5x)
For the following exercises, prove the given identity.
(sint−cost)2=1−sin(2t)
sin(2x)=−2sin(−x)cos(−x)
cotx−tanx=2cot(2x)
sin(2θ)1+cos(2θ)tan2θ=tan3θ
For the following exercises, rewrite the expression with an exponent no higher than 1.
cos2(5x)
cos2(6x)
sin4(8x)
sin4(3x)
cos2xsin4x
cos4xsin2x
tan2xsin2x
Technology
For the following exercises, reduce the equations to powers of one, and then check the answer graphically.
tan4x
sin2(2x)
sin2xcos2x
tan2xsinx
tan4xcos2x
cos2xsin(2x)
cos2(2x)sinx
tan2(x2)sinx
For the following exercises, algebraically find an equivalent function, only in terms ofsinxand/orcosx,and then check the answer by graphing both functions.
sin(4x)
cos(4x)
Extensions
For the following exercises, prove the identities.
sin(2x)=2tanx1+tan2x
cos(2α)=1−tan2α1+tan2α
tan(2x)=2sinxcosx2cos2x−1
(sin2x−1)2=cos(2x)+sin4x
sin(3x)=3sinxcos2x−sin3x
cos(3x)=cos3x−3sin2xcosx
1+cos(2t)sin(2t)−cost=2cost2sint−1
sin(16x)=16sinxcosxcos(2x)cos(4x)cos(8x)
cos(16x)=(cos2(4x)−sin2(4x)−sin(8x))(cos2(4x)−sin2(4x)+sin(8x))
Glossary
- double-angle formulas
- identities derived from the sum formulas for sine, cosine, and tangent in which the angles are equal
- half-angle formulas
- identities derived from the reduction formulas and used to determine half-angle values of trigonometric functions
- reduction formulas
- identities derived from the double-angle formulas and used to reduce the power of a trigonometric function
Candela Citations
- Algebra and Trigonometry. Authored by: Jay Abramson, et. al. Provided by: OpenStax CNX. Located at: http://cnx.org/contents/13ac107a-f15f-49d2-97e8-60ab2e3b519c@11.1. License: CC BY: Attribution. License Terms: Download for free at http://cnx.org/contents/13ac107a-f15f-49d2-97e8-60ab2e3b519c@11.1