Graphs of the Other Trigonometric Functions

Learning Objectives

In this section, you will:

  • Analyze the graph of  y=tan x.
  • Graph variations of  y=tan x.
  • Analyze the graphs of  y=sec x  and  y=csc x.
  • Graph variations of  y=sec x  and  y=csc x.
  • Analyze the graph of  y=cot x.
  • Graph variations of  y=cot x.

We know the tangent function can be used to find distances, such as the height of a building, mountain, or flagpole. But what if we want to measure repeated occurrences of distance? Imagine, for example, a police car parked next to a warehouse. The rotating light from the police car would travel across the wall of the warehouse in regular intervals. If the input is time, the output would be the distance the beam of light travels. The beam of light would repeat the distance at regular intervals. The tangent function can be used to approximate this distance. Asymptotes would be needed to illustrate the repeated cycles when the beam runs parallel to the wall because, seemingly, the beam of light could appear to extend forever. The graph of the tangent function would clearly illustrate the repeated intervals. In this section, we will explore the graphs of the tangent and other trigonometric functions.

Analyzing the Graph of y = tan x

We will begin with the graph of the tangent function, plotting points as we did for the sine and cosine functions. Recall that

tanx=sinxcosx

The period of the tangent function isπbecause the graph repeats itself on intervals ofkπwherekis a constant. If we graph the tangent function onπ2toπ2,we can see the behavior of the graph on one complete cycle. If we look at any larger interval, we will see that the characteristics of the graph repeat.

We can determine whether tangent is an odd or even function by using the definition of tangent.

tan(x)=sin(x)cos(x)Definition of tangent. =sinxcosxSine is an odd function, cosine is even. =sinxcosxThe quotient of an odd and an even function is odd. =tanxDefinition of tangent.

Therefore, tangent is an odd function. We can further analyze the graphical behavior of the tangent function by looking at values for some of the special angles, as listed in (Figure).

x π2 π3 π4 π6 0 π6 π4 π3 π2
tan(x) undefined 3 –1 33 0 33 1 3 undefined

These points will help us draw our graph, but we need to determine how the graph behaves where it is undefined. If we look more closely at values when[latex]\,\frac{\pi }{3}(Figure).

x 1.3 1.5 1.55 1.56
tan x 3.6 14.1 48.1 92.6

Asxapproachesπ2,the outputs of the function get larger and larger. Becausey=tanxis an odd function, we see the corresponding table of negative values in (Figure).

x −1.3 −1.5 −1.55 −1.56
tanx −3.6 −14.1 −48.1 −92.6

We can see that, asxapproachesπ2,the outputs get smaller and smaller. Remember that there are some values ofxfor whichcosx=0.For example,cos(π2)=0andcos(3π2)=0.At these values, the tangent function is undefined, so the graph ofy=tanxhas discontinuities atx=π2 and 3π2.At these values, the graph of the tangent has vertical asymptotes. (Figure) represents the graph ofy=tanx.The tangent is positive from 0 toπ2and fromπto3π2,corresponding to quadrants I and III of the unit circle.

A graph of y=tangent of x. Asymptotes at -pi over 2 and pi over 2.

Figure 1. Graph of the tangent function

Graphing Variations of y = tan x

As with the sine and cosine functions, the tangent function can be described by a general equation.

y=Atan(Bx)

We can identify horizontal and vertical stretches and compressions using values ofAandB.The horizontal stretch can typically be determined from the period of the graph. With tangent graphs, it is often necessary to determine a vertical stretch using a point on the graph.

Because there are no maximum or minimum values of a tangent function, the term amplitude cannot be interpreted as it is for the sine and cosine functions. Instead, we will use the phrase stretching/compressing factor when referring to the constantA.

Features of the Graph of y = Atan(Bx)

  • The stretching factor is|A|.
  • The period isP=π|B|.
  • The domain is all real numbersx,wherexπ2|B|+π|B|ksuch thatkis an integer.
  • The range is(,).
  • The asymptotes occur atx=π2|B|+π|B|k,wherekis an integer.
  • y=Atan(Bx)is an odd function.

Graphing One Period of a Stretched or Compressed Tangent Function

We can use what we know about the properties of the tangent function to quickly sketch a graph of any stretched and/or compressed tangent function of the formf(x)=Atan(Bx).We focus on a single period of the function including the origin, because the periodic property enables us to extend the graph to the rest of the function’s domain if we wish. Our limited domain is then the interval(P2,P2)and the graph has vertical asymptotes at±P2whereP=πB.On(π2,π2),the graph will come up from the left asymptote atx=π2,cross through the origin, and continue to increase as it approaches the right asymptote atx=π2.To make the function approach the asymptotes at the correct rate, we also need to set the vertical scale by actually evaluating the function for at least one point that the graph will pass through. For example, we can use

f(P4)=Atan(BP4)=Atan(Bπ4B)=A

becausetan(π4)=1.

Given the functionf(x)=Atan(Bx),graph one period.

  1. Identify the stretching factor,|A|.
  2. IdentifyBand determine the period,P=π|B|.
  3. Draw vertical asymptotes atx=P2andx=P2.
  4. ForA>0,the graph approaches the left asymptote at negative output values and the right asymptote at positive output values (reverse forA<0).
  5. Plot reference points at(P4,A),(0,0),and(P4,A),and draw the graph through these points.

Sketching a Compressed Tangent

Sketch a graph of one period of the functiony=0.5tan(π2x).

Try It

Sketch a graph off(x)=3tan(π6x).

Graphing One Period of a Shifted Tangent Function

Now that we can graph a tangent function that is stretched or compressed, we will add a vertical and/or horizontal (or phase) shift. In this case, we addCandDto the general form of the tangent function.

f(x)=Atan(BxC)+D

The graph of a transformed tangent function is different from the basic tangent functiontanxin several ways:

Features of the Graph of y = Atan(BxC)+D

  • The stretching factor is|A|.
  • The period isπ|B|.
  • The domain isxCB+π|B|k,wherekis an integer.
  • The range is(,).
  • The vertical asymptotes occur atx=CB+π2|B|k,wherekis an odd integer.
  • There is no amplitude.
  • y=Atan(BxC)+Dis an odd function because it is the quotient of odd and even functions (sin and cosine respectively).

Given the functiony=Atan(BxC)+D,sketch the graph of one period.

  1. Express the function given in the formy=Atan(BxC)+D.
  2. Identify the stretching/compressing factor,|A|.
  3. IdentifyBand determine the period,P=π|B|.
  4. IdentifyCand determine the phase shift,CB.
  5. Draw the graph ofy=Atan(Bx)shifted to the right byCBand up byD.
  6. Sketch the vertical asymptotes, which occur at x=CB+π2|B|k,where k is an odd integer.
  7. Plot any three reference points and draw the graph through these points.

Graphing One Period of a Shifted Tangent Function

Graph one period of the functiony=2tan(πx+π)1.

Analysis

Note that this is a decreasing function becauseA<0.

Try It

How would the graph in (Figure) look different if we madeA=2instead of2?

Given the graph of a tangent function, identify horizontal and vertical stretches.

  1. Find the periodPfrom the spacing between successive vertical asymptotes or x-intercepts.
  2. Writef(x)=Atan(πPx).
  3. Determine a convenient point(x,f(x))on the given graph and use it to determineA.

Identifying the Graph of a Stretched Tangent

Find a formula for the function graphed in (Figure).

A graph of two periods of a modified tangent function, with asymptotes at x=-4 and x=4.

Figure 4. A stretched tangent function

Try It

Find a formula for the function in (Figure).

A graph of four periods of a modified tangent function, Vertical asymptotes at -3pi/4, -pi/4, pi/4, and 3pi/4.

Figure 5.

Analyzing the Graphs of y = sec x and y = cscx

The secant was defined by the reciprocal identitysecx=1cosx.Notice that the function is undefined when the cosine is 0, leading to vertical asymptotes atπ2,3π2,etc. Because the cosine is never more than 1 in absolute value, the secant, being the reciprocal, will never be less than 1 in absolute value.

We can graphy=secxby observing the graph of the cosine function because these two functions are reciprocals of one another. See (Figure). The graph of the cosine is shown as a dashed orange wave so we can see the relationship. Where the graph of the cosine function decreases, the graph of the secant function increases. Where the graph of the cosine function increases, the graph of the secant function decreases. When the cosine function is zero, the secant is undefined.

The secant graph has vertical asymptotes at each value ofxwhere the cosine graph crosses the x-axis; we show these in the graph below with dashed vertical lines, but will not show all the asymptotes explicitly on all later graphs involving the secant and cosecant.

Note that, because cosine is an even function, secant is also an even function. That is,sec(x)=secx.

A graph of cosine of x and secant of x. Asymptotes for secant of x shown at -3pi/2, -pi/2, pi/2, and 3pi/2.

Figure 6. Graph of the secant function,f(x)=secx=1cosx

As we did for the tangent function, we will again refer to the constant|A|as the stretching factor, not the amplitude.

Features of the Graph of y = Asec(Bx)

  • The stretching factor is|A|.
  • The period is2π|B|.
  • The domain isxπ2|B|k,wherekis an odd integer.
  • The range is(,|A|][|A|,).
  • The vertical asymptotes occur atx=π2|B|k,wherekis an odd integer.
  • There is no amplitude.
  • y=Asec(Bx)is an even function because cosine is an even function.

Similar to the secant, the cosecant is defined by the reciprocal identitycscx=1sinx.Notice that the function is undefined when the sine is 0, leading to a vertical asymptote in the graph at0,π,etc. Since the sine is never more than 1 in absolute value, the cosecant, being the reciprocal, will never be less than 1 in absolute value.

We can graphy=cscxby observing the graph of the sine function because these two functions are reciprocals of one another. See (Figure). The graph of sine is shown as a dashed orange wave so we can see the relationship. Where the graph of the sine function decreases, the graph of the cosecant function increases. Where the graph of the sine function increases, the graph of the cosecant function decreases.

The cosecant graph has vertical asymptotes at each value ofxwhere the sine graph crosses the x-axis; we show these in the graph below with dashed vertical lines.

Note that, since sine is an odd function, the cosecant function is also an odd function. That is,csc(x)=cscx.

The graph of cosecant, which is shown in (Figure), is similar to the graph of secant.

A graph of cosecant of x and sin of x. Five vertical asymptotes shown at multiples of pi.

Figure 7. The graph of the cosecant function,f(x)=cscx=1sinx

Features of the Graph of y = Acsc(Bx)

  • The stretching factor is|A|.
  • The period is2π|B|.
  • The domain isxπ|B|k,wherekis an integer.
  • The range is(,|A|][|A|,).
  • The asymptotes occur atx=π|B|k,wherekis an integer.
  • y=Acsc(Bx)is an odd function because sine is an odd function.

Graphing Variations of y = sec x and y= csc x

For shifted, compressed, and/or stretched versions of the secant and cosecant functions, we can follow similar methods to those we used for tangent and cotangent. That is, we locate the vertical asymptotes and also evaluate the functions for a few points (specifically the local extrema). If we want to graph only a single period, we can choose the interval for the period in more than one way. The procedure for secant is very similar, because the cofunction identity means that the secant graph is the same as the cosecant graph shifted half a period to the left. Vertical and phase shifts may be applied to the cosecant function in the same way as for the secant and other functions.The equations become the following.

y=Asec(BxC)+D
y=Acsc(BxC)+D

Features of the Graph of y = Asec(BxC)+D

  • The stretching factor is|A|.
  • The period is2π|B|.
  • The domain isxCB+π2|B|k,wherekis an odd integer.
  • The range is(,|A|+D][|A|+D,).
  • The vertical asymptotes occur atx=CB+π2|B|k,wherekis an odd integer.
  • There is no amplitude.
  • y=Asec(BxC)+Dis an even function because cosine is an even function.

Features of the Graph of y = Acsc(BxC)+D

  • The stretching factor is|A|.
  • The period is2π|B|.
  • The domain isxCB+π|B|k,wherekis an integer.
  • The range is(,|A|+D][|A|+D,).
  • The vertical asymptotes occur atx=CB+π|B|k,wherekis an integer.
  • There is no amplitude.
  • y=Acsc(BxC)+Dis an odd function because sine is an odd function.

Given a function of the formy=Asec(Bx),graph one period.

  1. Express the function given in the formy=Asec(Bx).
  2. Identify the stretching/compressing factor,|A|.
  3. IdentifyBand determine the period,P=2π|B|.
  4. Sketch the graph ofy=Acos(Bx).
  5. Use the reciprocal relationship betweeny=cosxandy=secxto draw the graph ofy=Asec(Bx).
  6. Sketch the asymptotes.
  7. Plot any two reference points and draw the graph through these points.

Graphing a Variation of the Secant Function

Graph one period off(x)=2.5sec(0.4x).

Try It

Graph one period off(x)=2.5sec(0.4x).

Do the vertical shift and stretch/compression affect the secant’s range?

Yes. The range off(x)=Asec(BxC)+Dis(,|A|+D][|A|+D,).

Given a function of the formf(x)=Asec(BxC)+D,graph one period.

  1. Express the function given in the formy=Asec(BxC)+D.
  2. Identify the stretching/compressing factor,|A|.
  3. IdentifyBand determine the period,2π|B|.
  4. IdentifyCand determine the phase shift,CB.
  5. Draw the graph ofy=Asec(Bx).but shift it to the right byCBand up byD.
  6. Sketch the vertical asymptotes, which occur atx=CB+π2|B|k,wherekis an odd integer.

Graphing a Variation of the Secant Function

Graph one period ofy=4sec(π3xπ2)+1.

Try It

Graph one period off(x)=6sec(4x+2)8.

The domain ofcscxwas given to be allxsuch thatxkπfor any integerk.Would the domain ofy=Acsc(BxC)+DbexC+kπB?

Yes. The excluded points of the domain follow the vertical asymptotes. Their locations show the horizontal shift and compression or expansion implied by the transformation to the original function’s input.

Given a function of the formy=Acsc(Bx),graph one period.

  1. Express the function given in the formy=Acsc(Bx).
  2. |A|.
  3. IdentifyBand determine the period,P=2π|B|.
  4. Draw the graph ofy=Asin(Bx).
  5. Use the reciprocal relationship betweeny=sinxandy=cscxto draw the graph ofy=Acsc(Bx).
  6. Sketch the asymptotes.
  7. Plot any two reference points and draw the graph through these points.

Graphing a Variation of the Cosecant Function

Graph one period off(x)=3csc(4x).

Try It

Graph one period off(x)=0.5csc(2x).

Given a function of the formf(x)=Acsc(BxC)+D,graph one period.

  1. Express the function given in the formy=Acsc(BxC)+D.
  2. Identify the stretching/compressing factor,|A|.
  3. IdentifyBand determine the period,2π|B|.
  4. IdentifyCand determine the phase shift,CB.
  5. Draw the graph ofy=Acsc(Bx)but shift it to the right by CB and up byD.
  6. Sketch the vertical asymptotes, which occur atx=CB+π|B|k,wherekis an integer.

Graphing a Vertically Stretched, Horizontally Compressed, and Vertically Shifted Cosecant

Sketch a graph ofy=2csc(π2x)+1.What are the domain and range of this function?

Analysis

The vertical asymptotes shown on the graph mark off one period of the function, and the local extrema in this interval are shown by dots. Notice how the graph of the transformed cosecant relates to the graph off(x)=2sin(π2x)+1,shown as the orange dashed wave.

Try It

Given the graph off(x)=2cos(π2x)+1shown in (Figure), sketch the graph ofg(x)=2sec(π2x)+1on the same axes.

A graph of two periods of a modified cosine function. Range is [-1,3], graphed from x=-4 to x=4.

Figure 12.

Analyzing the Graph of y = cot x

The last trigonometric function we need to explore is cotangent. The cotangent is defined by the reciprocal identitycotx=1tanx.Notice that the function is undefined when the tangent function is 0, leading to a vertical asymptote in the graph at0,π,etc. Since the output of the tangent function is all real numbers, the output of the cotangent function is also all real numbers.

We can graphy=cotxby observing the graph of the tangent function because these two functions are reciprocals of one another. See (Figure). Where the graph of the tangent function decreases, the graph of the cotangent function increases. Where the graph of the tangent function increases, the graph of the cotangent function decreases.

The cotangent graph has vertical asymptotes at each value ofxwheretanx=0;we show these in the graph below with dashed lines. Since the cotangent is the reciprocal of the tangent,cotxhas vertical asymptotes at all values ofxwheretanx=0,andcotx=0at all values ofxwheretanxhas its vertical asymptotes.

A graph of cotangent of x, with vertical asymptotes at multiples of pi.

Figure 13. The cotangent function

Features of the Graph of y = Acot(Bx)

  • The stretching factor is|A|.
  • The period isP=π|B|.
  • The domain isxπ|B|k,wherekis an integer.
  • The range is(,).
  • The asymptotes occur atx=π|B|k,wherekis an integer.
  • y=Acot(Bx)is an odd function.

Graphing Variations of y = cot x

We can transform the graph of the cotangent in much the same way as we did for the tangent. The equation becomes the following.

y=Acot(BxC)+D

Properties of the Graph of y = Acot(Bx−C)+D

  • The stretching factor is|A|.
  • The period isπ|B|.
  • The domain isxCB+π|B|k,wherekis an integer.
  • The range is(,).
  • The vertical asymptotes occur atx=CB+π|B|k,wherekis an integer.
  • There is no amplitude.
  • y=Acot(Bx)is an odd function because it is the quotient of even and odd functions (cosine and sine, respectively)

Given a modified cotangent function of the formf(x)=Acot(Bx),graph one period.

  1. Express the function in the formf(x)=Acot(Bx).
  2. Identify the stretching factor,|A|.
  3. Identify the period,P=π|B|.
  4. Draw the graph ofy=Atan(Bx).
  5. Plot any two reference points.
  6. Use the reciprocal relationship between tangent and cotangent to draw the graph ofy=Acot(Bx).
  7. Sketch the asymptotes.

Graphing Variations of the Cotangent Function

Determine the stretching factor, period, and phase shift ofy=3cot(4x),and then sketch a graph.

Given a modified cotangent function of the formf(x)=Acot(BxC)+D,graph one period.

  1. Express the function in the formf(x)=Acot(BxC)+D.
  2. Identify the stretching factor,|A|.
  3. Identify the period,P=π|B|.
  4. Identify the phase shift,CB.
  5. Draw the graph ofy=Atan(Bx) shifted to the right byCBand up byD.
  6. Sketch the asymptotesx=CB+π|B|k,wherekis an integer.
  7. Plot any three reference points and draw the graph through these points.

Graphing a Modified Cotangent

Sketch a graph of one period of the functionf(x)=4cot(π8xπ2)2.

Using the Graphs of Trigonometric Functions to Solve Real-World Problems

Many real-world scenarios represent periodic functions and may be modeled by trigonometric functions. As an example, let’s return to the scenario from the section opener. Have you ever observed the beam formed by the rotating light on a police car and wondered about the movement of the light beam itself across the wall? The periodic behavior of the distance the light shines as a function of time is obvious, but how do we determine the distance? We can use the tangent function.

Using Trigonometric Functions to Solve Real-World Scenarios

Suppose the functiony=5tan(π4t)marks the distance in the movement of a light beam from the top of a police car across a wall wheretis the time in seconds andyis the distance in feet from a point on the wall directly across from the police car.

  1. Find and interpret the stretching factor and period.
  2. Graph on the interval[0,5].
  3. Evaluatef(1)and discuss the function’s value at that input.

Access these online resources for additional instruction and practice with graphs of other trigonometric functions.

Key Equations

Shifted, compressed, and/or stretched tangent function y=Atan(BxC)+D
Shifted, compressed, and/or stretched secant function y=Asec(BxC)+D
Shifted, compressed, and/or stretched cosecant function y=Acsc(BxC)+D
Shifted, compressed, and/or stretched cotangent function y=Acot(BxC)+D

Key Concepts

  • The tangent function has periodπ.
  • f(x)=Atan(BxC)+Dis a tangent with vertical and/or horizontal stretch/compression and shift. See (Figure), (Figure), and (Figure).
  • The secant and cosecant are both periodic functions with a period of2π.f(x)=Asec(BxC)+Dgives a shifted, compressed, and/or stretched secant function graph. See (Figure) and (Figure).
  • f(x)=Acsc(BxC)+Dgives a shifted, compressed, and/or stretched cosecant function graph. See (Figure) and (Figure).
  • The cotangent function has periodπand vertical asymptotes at0,±π,±2π,....
  • The range of cotangent is(,),and the function is decreasing at each point in its range.
  • The cotangent is zero at±π2,±3π2,....
  • f(x)=Acot(BxC)+Dis a cotangent with vertical and/or horizontal stretch/compression and shift. See (Figure) and (Figure).
  • Real-world scenarios can be solved using graphs of trigonometric functions. See (Figure).

Section Exercises

Verbal

Explain how the graph of the sine function can be used to graphy=cscx.

How can the graph ofy=cosxbe used to construct the graph ofy=secx?

Explain why the period oftanxis equal toπ.

Why are there no intercepts on the graph ofy=cscx?

How does the period ofy=cscxcompare with the period ofy=sinx?

Algebraic

For the following exercises, match each trigonometric function with one of the following graphs.

Trigonometric graph of tangent of x.Trigonometric graph of secant of x.Trigonometric graph of cosecant of x.Trigonometric graph of cotangent of x.

f(x)=tanx

f(x)=secx

f(x)=cscx

f(x)=cotx

For the following exercises, find the period and horizontal shift of each of the functions.

f(x)=2tan(4x32)

h(x)=2sec(π4(x+1))

m(x)=6csc(π3x+π)

Iftanx=1.5,findtan(x).

Ifsecx=2,findsec(x).

Ifcscx=5,findcsc(x).

Ifxsinx=2,find(x)sin(x).

For the following exercises, rewrite each expression such that the argumentxis positive.

cot(x)cos(x)+sin(x)

cos(x)+tan(x)sin(x)

Graphical

For the following exercises, sketch two periods of the graph for each of the following functions. Identify the stretching factor, period, and asymptotes.

f(x)=2tan(4x32)

h(x)=2sec(π4(x+1))

m(x)=6csc(π3x+π)

j(x)=tan(π2x)

p(x)=tan(xπ2)

f(x)=4tan(x)

f(x)=tan(x+π4)

f(x)=πtan(πxπ)π

f(x)=2csc(x)

f(x)=14csc(x)

f(x)=4sec(3x)

f(x)=3cot(2x)

f(x)=7sec(5x)

f(x)=910csc(πx)

f(x)=2csc(x+π4)1

f(x)=sec(xπ3)2

f(x)=75csc(xπ4)

f(x)=5(cot(x+π2)3)

For the following exercises, find and graph two periods of the periodic function with the given stretching factor,|A|,period, and phase shift.

A tangent curve,A=1,period ofπ3;and phase shift(h,k)=(π4,2)

A tangent curve,A=2,period ofπ4,and phase shift(h,k)=(π4,2)

For the following exercises, find an equation for the graph of each function.

A graph of two periods of a modified cosecant function, with asymptotes at multiples of pi/2.

A graph of a modified cotangent function. Vertical asymptotes at x=-1 and x=0 and x=1.
A graph of a modified cosecant function. Vertical asymptotes at multiples of pi/4.

A graph of a modified tangent function. Vertical asymptotes at -pi/8 and 3pi/8.
A graph of a modified cosecant function. Vertical asymptotyes at multiples of pi.

A graph of a modified secant function. Four vertical asymptotes.
graph of two periods of a modified tangent function. Vertical asymptotes at x=-0.005 and x=0.005.

Technology

For the following exercises, use a graphing calculator to graph two periods of the given function. Note: most graphing calculators do not have a cosecant button; therefore, you will need to inputcscxas1sinx.

f(x)=|csc(x)|

f(x)=|cot(x)|

f(x)=2csc(x)

f(x)=csc(x)sec(x)

Graphf(x)=1+sec2(x)tan2(x).What is the function shown in the graph?

f(x)=sec(0.001x)

f(x)=cot(100πx)

f(x)=sin2x+cos2x

Real-World Applications

The functionf(x)=20tan(π10x)marks the distance in the movement of a light beam from a police car across a wall for timex,in seconds, and distancef(x),
in feet.

  1. Graph on the interval[0,5].
  2. Find and interpret the stretching factor, period, and asymptote.
  3. Evaluatef(1)andf(2.5)and discuss the function’s values at those inputs.

Standing on the shore of a lake, a fisherman sights a boat far in the distance to his left. Letx,measured in radians, be the angle formed by the line of sight to the ship and a line due north from his position. Assume due north is 0 andxis measured negative to the left and positive to the right. (See (Figure).) The boat travels from due west to due east and, ignoring the curvature of the Earth, the distanced(x),in kilometers, from the fisherman to the boat is given by the functiond(x)=1.5sec(x).

  1. What is a reasonable domain ford(x)?
  2. Graphd(x)on this domain.
  3. Find and discuss the meaning of any vertical asymptotes on the graph ofd(x).
  4. Calculate and interpretd(π3).Round to the second decimal place.
  5. Calculate and interpretd(π6).Round to the second decimal place.
  6. What is the minimum distance between the fisherman and the boat? When does this occur?
An illustration of a man and the distance he is away from a boat.

Figure 18.

A laser rangefinder is locked on a comet approaching Earth. The distanceg(x),in kilometers, of the comet afterxdays, forxin the interval 0 to 30 days, is given byg(x)=250,000csc(π30x).

  1. Graphg(x)on the interval[0,35].
  2. Evaluateg(5)
    and interpret the information.
  3. What is the minimum distance between the comet and Earth? When does this occur? To which constant in the equation does this correspond?
  4. Find and discuss the meaning of any vertical asymptotes.

A video camera is focused on a rocket on a launching pad 2 miles from the camera. The angle of elevation from the ground to the rocket afterxseconds isπ120x.

  1. Write a function expressing the altitudeh(x),in miles, of the rocket above the ground afterxseconds. Ignore the curvature of the Earth.
  2. Graphh(x)on the interval(0,60).
  3. Evaluate and interpret the valuesh(0)andh(30).
  4. What happens to the values ofh(x)as x
    approaches 60 seconds? Interpret the meaning of this in terms of the problem.