Graphs of the Sine and Cosine Functions

Learning Objectives

In this section, you will:

  • Graph variations of  y=sin( x )  and  y=cos( x ).
  • Use phase shifts of sine and cosine curves.
A photo of a rainbow colored beam of light stretching across the floor.

Figure 1. Light can be separated into colors because of its wavelike properties. (credit: “wonderferret”/ Flickr)

White light, such as the light from the sun, is not actually white at all. Instead, it is a composition of all the colors of the rainbow in the form of waves. The individual colors can be seen only when white light passes through an optical prism that separates the waves according to their wavelengths to form a rainbow.

Light waves can be represented graphically by the sine function. In the chapter on Trigonometric Functions, we examined trigonometric functions such as the sine function. In this section, we will interpret and create graphs of sine and cosine functions.

Graphing Sine and Cosine Functions

Recall that the sine and cosine functions relate real number values to the x– and y-coordinates of a point on the unit circle. So what do they look like on a graph on a coordinate plane? Let’s start with the sine function. We can create a table of values and use them to sketch a graph. (Figure) lists some of the values for the sine function on a unit circle.

xx 00 π6π6 π4π4 π3π3 π2π2 2π32π3 3π43π4 5π65π6 ππ
sin(x)sin(x) 00 1212 2222 3232 11 3232 2222 1212 00

Plotting the points from the table and continuing along the x-axis gives the shape of the sine function. See (Figure).

A graph of sin(x). Local maximum at (pi/2, 1). Local minimum at (3pi/2, -1). Period of 2pi.

Figure 2. The sine function

Notice how the sine values are positive between 0 andπ,π,which correspond to the values of the sine function in quadrants I and II on the unit circle, and the sine values are negative betweenππand2π,2π,which correspond to the values of the sine function in quadrants III and IV on the unit circle. See (Figure).

A side-by-side graph of a unit circle and a graph of sin(x). The two graphs show the equivalence of the coordinates.

Figure 3. Plotting values of the sine function

Now let’s take a similar look at the cosine function. Again, we can create a table of values and use them to sketch a graph. (Figure) lists some of the values for the cosine function on a unit circle.

xx 00 π6π6 π4π4 π3π3 π2π2 2π32π3 3π43π4 5π65π6 ππ
cos(x)cos(x) 11 3232 2222 1212 00 1212 2222 3232 11

As with the sine function, we can plots points to create a graph of the cosine function as in (Figure).

A graph of cos(x). Local maxima at (0,1) and (2pi, 1). Local minimum at (pi, -1). Period of 2pi.

Figure 4. The cosine function

Because we can evaluate the sine and cosine of any real number, both of these functions are defined for all real numbers. By thinking of the sine and cosine values as coordinates of points on a unit circle, it becomes clear that the range of both functions must be the interval[1,1].[1,1].

In both graphs, the shape of the graph repeats after2π,2π,which means the functions are periodic with a period of2π.2π.A periodic function is a function for which a specific horizontal shift, P, results in a function equal to the original function:f(x+P)=f(x)f(x+P)=f(x)for all values ofxxin the domain off.f.When this occurs, we call the smallest such horizontal shift withP>0P>0the period of the function. (Figure) shows several periods of the sine and cosine functions.

Side-by-side graphs of sin(x) and cos(x). Graphs show period lengths for both functions, which is 2pi.

Figure 5.

Looking again at the sine and cosine functions on a domain centered at the y-axis helps reveal symmetries. As we can see in (Figure), the sine function is symmetric about the origin. Recall from The Other Trigonometric Functions that we determined from the unit circle that the sine function is an odd function becausesin(x)=sinx.sin(x)=sinx.
Now we can clearly see this property from the graph.

A graph of sin(x) that shows that sin(x) is an odd function due to the odd symmetry of the graph.

Figure 6. Odd symmetry of the sine function

(Figure) shows that the cosine function is symmetric about the y-axis. Again, we determined that the cosine function is an even function. Now we can see from the graph that cos(x)=cos x.cos(x)=cos x.

A graph of cos(x) that shows that cos(x) is an even function due to the even symmetry of the graph.

Figure 7. Even symmetry of the cosine function

Characteristics of Sine and Cosine Functions

The sine and cosine functions have several distinct characteristics:

  • They are periodic functions with a period of2π.
  • The domain of each function is(,)and the range is[1,1].
  • The graph ofy=sin xis symmetric about the origin, because it is an odd function.
  • The graph ofy=cos xis symmetric about they-axis, because it is an even function.

Investigating Sinusoidal Functions

As we can see, sine and cosine functions have a regular period and range. If we watch ocean waves or ripples on a pond, we will see that they resemble the sine or cosine functions. However, they are not necessarily identical. Some are taller or longer than others. A function that has the same general shape as a sine or cosine function is known as a sinusoidal function. The general forms of sinusoidal functions are

y=Asin(BxC)+D andy=Acos(BxC)+D

Determining the Period of Sinusoidal Functions

Looking at the forms of sinusoidal functions, we can see that they are transformations of the sine and cosine functions. We can use what we know about transformations to determine the period.

In the general formula,Bis related to the period byP=2π|B|.If|B|>1,then the period is less than2πand the function undergoes a horizontal compression, whereas if|B|<1,then the period is greater than2πand the function undergoes a horizontal stretch. For example,f(x)=sin(x),B=1,so the period is2π,which we knew. Iff(x)=sin(2x),thenB=2,so the period isπand the graph is compressed. Iff(x)=sin(x2),thenB=12,so the period is4πand the graph is stretched. Notice in (Figure) how the period is indirectly related to|B|.

A graph with three items. The x-axis ranges from 0 to 2pi. The y-axis ranges from -1 to 1. The first item is the graph of sin(x) for one full period. The second is the graph of sin(2x) over two periods. The third is the graph of sin(x/2) for one half of a period.

Figure 8.

Period of Sinusoidal Functions

If we letC=0andD=0in the general form equations of the sine and cosine functions, we obtain the forms

y=Asin(Bx)
y=Acos(Bx)

The period is2π|B|.

Identifying the Period of a Sine or Cosine Function

Determine the period of the functionf(x)=sin(π6x).

Try It

Determine the period of the functiong(x)=cos(x3).

Determining Amplitude

Returning to the general formula for a sinusoidal function, we have analyzed how the variableBrelates to the period. Now let’s turn to the variableAso we can analyze how it is related to the amplitude, or greatest distance from rest.Arepresents the vertical stretch factor, and its absolute value|A|is the amplitude. The local maxima will be a distance|A|above the horizontal midline of the graph, which is the liney=D;becauseD=0in this case, the midline is the x-axis. The local minima will be the same distance below the midline. If|A|>1,the function is stretched. For example, the amplitude off(x)=4sinxis twice the amplitude off(x)=2sinx.If|A|<1,the function is compressed. (Figure) compares several sine functions with different amplitudes.

A graph with four items. The x-axis ranges from -6pi to 6pi. The y-axis ranges from -4 to 4. The first item is the graph of sin(x), which has an amplitude of 1. The second is a graph of 2sin(x), which has amplitude of 2. The third is a graph of 3sin(x), which has an amplitude of 3. The fourth is a graph of 4 sin(x) with an amplitude of 4.

Figure 9.

Amplitude of Sinusoidal Functions

If we letC=0andD=0in the general form equations of the sine and cosine functions, we obtain the forms

y=Asin(Bx) and y=Acos(Bx)

The amplitude isA,and the vertical height from the midline is|A|.In addition, notice in the example that

|A| = amplitude = 12|maximum  minimum|

Identifying the Amplitude of a Sine or Cosine Function

What is the amplitude of the sinusoidal functionf(x)=4sin(x)?Is the function stretched or compressed vertically?

Analysis

The negative value ofAresults in a reflection across the x-axis of the sine function, as shown in (Figure).

A graph of -4sin(x). The function has an amplitude of 4. Local minima at (-3pi/2, -4) and (pi/2, -4). Local maxima at (-pi/2, 4) and (3pi/2, 4). Period of 2pi.

Figure 10.

Try It

What is the amplitude of the sinusoidal functionf(x)=12sin(x)?Is the function stretched or compressed vertically?

12compressed

Analyzing Graphs of Variations of y = sin x and y = cos x

Now that we understand howAandBrelate to the general form equation for the sine and cosine functions, we will explore the variablesCandD.Recall the general form:

y=Asin(BxC)+D and y=Acos(BxC)+Dory=Asin(B(xCB))+D and y=Acos(B(xCB))+D

The valueCBfor a sinusoidal function is called the phase shift, or the horizontal displacement of the basic sine or cosine function. IfC>0,the graph shifts to the right. IfC<0,the graph shifts to the left. The greater the value of|C|,the more the graph is shifted. (Figure) shows that the graph off(x)=sin(xπ)shifts to the right byπunits, which is more than we see in the graph off(x)=sin(xπ4),which shifts to the right byπ4units.

A graph with three items. The first item is a graph of sin(x). The second item is a graph of sin(x-pi/4), which is the same as sin(x) except shifted to the right by pi/4. The third item is a graph of sin(x-pi), which is the same as sin(x) except shifted to the right by pi.

Figure 11.

WhileCrelates to the horizontal shift,Dindicates the vertical shift from the midline in the general formula for a sinusoidal function. See (Figure). The functiony=cos(x)+Dhas its midline aty=D.

A graph of y=Asin(x)+D. Graph shows the midline of the function at y=D.

Figure 12.

Any value ofDother than zero shifts the graph up or down. (Figure) comparesf(x)=sinxwithf(x)=sinx+2,which is shifted 2 units up on a graph.

A graph with two items. The first item is a graph of sin(x). The second item is a graph of sin(x)+2, which is the same as sin(x) except shifted up by 2.

Figure 13.

Variations of Sine and Cosine Functions

Given an equation in the formf(x)=Asin(BxC)+Dorf(x)=Acos(BxC)+D,CBis the phase shift andDis the vertical shift.

Identifying the Phase Shift of a Function

Determine the direction and magnitude of the phase shift forf(x)=sin(x+π6)2.

Analysis

We must pay attention to the sign in the equation for the general form of a sinusoidal function. The equation shows a minus sign beforeC.Thereforef(x)=sin(x+π6)2can be rewritten asf(x)=sin(x(π6))2.If the value ofCis negative, the shift is to the left.

Try It

Determine the direction and magnitude of the phase shift forf(x)=3cos(xπ2).

Identifying the Vertical Shift of a Function

Determine the direction and magnitude of the vertical shift forf(x)=cos(x)3.

Try It

Determine the direction and magnitude of the vertical shift forf(x)=3sin(x)+2.

Given a sinusoidal function in the formf(x)=Asin(BxC)+D,identify the midline, amplitude, period, and phase shift.

  1. Determine the amplitude as|A|.
  2. Determine the period asP=2π|B|.
  3. Determine the phase shift asCB.
  4. Determine the midline asy=D.

Identifying the Variations of a Sinusoidal Function from an Equation

Determine the midline, amplitude, period, and phase shift of the functiony=3sin(2x)+1.

Analysis

Inspecting the graph, we can determine that the period isπ,the midline isy=1,and the amplitude is 3. See (Figure).

A graph of y=3sin(2x)+1. The graph has an amplitude of 3. There is a midline at y=1. There is a period of pi. Local maximum at (pi/4, 4) and local minimum at (3pi/4, -2).

Figure 14.

Try It

Determine the midline, amplitude, period, and phase shift of the functiony=12cos(x3π3).

Identifying the Equation for a Sinusoidal Function from a Graph

Determine the formula for the cosine function in (Figure).

A graph of -0.5cos(x)+0.5. The graph has an amplitude of 0.5. The graph has a period of 2pi. The graph has a range of [0, 1]. The graph is also reflected about the x-axis from the parent function cos(x).

Figure 15.

Try It

Determine the formula for the sine function in (Figure).

A graph of sin(x)+2. Period of 2pi, amplitude of 1, and range of [1, 3].

Figure 16.

Identifying the Equation for a Sinusoidal Function from a Graph

Determine the equation for the sinusoidal function in (Figure).

A graph of 3cos(pi/3x-pi/3)-2. Graph has amplitude of 3, period of 6, range of [-5,1].

Figure 17.

Try It

Write a formula for the function graphed in (Figure).

A graph of 4sin((pi/5)x-pi/5)+4. Graph has period of 10, amplitude of 4, range of [0,8].

Figure 18.

Graphing Variations of y = sin x and y = cos x

Throughout this section, we have learned about types of variations of sine and cosine functions and used that information to write equations from graphs. Now we can use the same information to create graphs from equations.

Instead of focusing on the general form equations

y=Asin(BxC)+D and y=Acos(BxC)+D,

we will letC=0andD=0and work with a simplified form of the equations in the following examples.

Given the functiony=Asin(Bx),sketch its graph.

  1. Identify the amplitude,|A|.
  2. Identify the period,P=2π|B|.
  3. Start at the origin, with the function increasing to the right ifAis positive or decreasing ifAis negative.
  4. Atx=π2|B|there is a local maximum forA>0or a minimum forA<0,withy=A.
  5. The curve returns to the x-axis atx=π|B|.
  6. There is a local minimum forA>0(maximum forA<0) atx=3π2|B|withy=A.
  7. The curve returns again to the x-axis atx=2π|B|.

Graphing a Function and Identifying the Amplitude and Period

Sketch a graph off(x)=2sin(πx2).

Try It

Sketch a graph ofg(x)=0.8cos(2x).Determine the midline, amplitude, period, and phase shift.

Given a sinusoidal function with a phase shift and a vertical shift, sketch its graph.

  1. Express the function in the general formy=Asin(BxC)+D or y=Acos(BxC)+D.
  2. Identify the amplitude,|A|.
  3. Identify the period,P=2π|B|.
  4. Identify the phase shift,CB.
  5. Draw the graph off(x)=Asin(Bx) shifted to the right or left byCBand up or down byD.

Graphing a Transformed Sinusoid

Sketch a graph off(x)=3sin(π4xπ4).

Try It

Draw a graph ofg(x)=2cos(π3x+π6).Determine the midline, amplitude, period, and phase shift.

Identifying the Properties of a Sinusoidal Function

Giveny=2cos(π2x+π)+3,determine the amplitude, period, phase shift, and horizontal shift. Then graph the function.

Using Transformations of Sine and Cosine Functions

We can use the transformations of sine and cosine functions in numerous applications. As mentioned at the beginning of the chapter, circular motion can be modeled using either the sine or cosine function.

Finding the Vertical Component of Circular Motion

A point rotates around a circle of radius 3 centered at the origin. Sketch a graph of the y-coordinate of the point as a function of the angle of rotation.

Analysis

Notice that the period of the function is still2π;as we travel around the circle, we return to the point(3,0)forx=2π,4π,6π,....Because the outputs of the graph will now oscillate between3and3,the amplitude of the sine wave is3.

Try It

What is the amplitude of the functionf(x)=7cos(x)?Sketch a graph of this function.

Finding the Vertical Component of Circular Motion

A circle with radius 3 ft is mounted with its center 4 ft off the ground. The point closest to the ground is labeled P, as shown in (Figure). Sketch a graph of the height above the ground of the pointPas the circle is rotated; then find a function that gives the height in terms of the angle of rotation.

An illustration of a circle lifted 4 feet off the ground. Circle has radius of 3 ft. There is a point P labeled on the circle's circumference.

Figure 23.

Try It

A weight is attached to a spring that is then hung from a board, as shown in (Figure). As the spring oscillates up and down, the positionyof the weight relative to the board ranges from1in. (at timex=0)to7in. (at timex=π)below the board. Assume the position ofyis given as a sinusoidal function ofx.Sketch a graph of the function, and then find a cosine function that gives the positionyin terms ofx.

An illustration of a spring with length y.

Figure 25.

Determining a Rider’s Height on a Ferris Wheel

The London Eye is a huge Ferris wheel with a diameter of 135 meters (443 feet). It completes one rotation every 30 minutes. Riders board from a platform 2 meters above the ground. Express a rider’s height above ground as a function of time in minutes.

Access these online resources for additional instruction and practice with graphs of sine and cosine functions.

Key Equations

 
Sinusoidal functions f(x)=Asin(BxC)+Df(x)=Acos(BxC)+D

Key Concepts

  • Periodic functions repeat after a given value. The smallest such value is the period. The basic sine and cosine functions have a period of2π.
  • The function sinxis odd, so its graph is symmetric about the origin. The function cosxis even, so its graph is symmetric about the y-axis.
  • The graph of a sinusoidal function has the same general shape as a sine or cosine function.
  • In the general formula for a sinusoidal function, the period isP=2π|B|.See (Figure).
  • In the general formula for a sinusoidal function,|A|represents amplitude. If|A|>1,the function is stretched, whereas if|A|<1,the function is compressed. See (Figure).
  • The valueCBin the general formula for a sinusoidal function indicates the phase shift. See (Figure).
  • The valueDin the general formula for a sinusoidal function indicates the vertical shift from the midline. See (Figure).
  • Combinations of variations of sinusoidal functions can be detected from an equation. See (Figure).
  • The equation for a sinusoidal function can be determined from a graph. See (Figure) and (Figure).
  • A function can be graphed by identifying its amplitude and period. See (Figure) and (Figure).
  • A function can also be graphed by identifying its amplitude, period, phase shift, and horizontal shift. See (Figure).
  • Sinusoidal functions can be used to solve real-world problems. See (Figure), (Figure), and (Figure).

Section Exercises

Verbal

Why are the sine and cosine functions called periodic functions?

How does the graph ofy=sinx
compare with the graph ofy=cosx?
Explain how you could horizontally translate the graph ofy=sinx
to obtainy=cosx.

For the equationAcos(Bx+C)+D,what constants affect the range of the function and how do they affect the range?

How does the range of a translated sine function relate to the equationy=Asin(Bx+C)+D?

How can the unit circle be used to construct the graph off(t)=sint?

Graphical

For the following exercises, graph two full periods of each function and state the amplitude, period, and midline. State the maximum and minimum y-values and their corresponding x-values on one period forx>0.Round answers to two decimal places if necessary.

f(x)=2sinx

f(x)=23cosx

f(x)=3sinx

f(x)=4sinx

f(x)=2cosx

f(x)=cos(2x)

f(x)=2sin(12x)

f(x)=4cos(πx)

f(x)=3cos(65x)

y=3sin(8(x+4))+5

y=2sin(3x21)+4

y=5sin(5x+20)2

For the following exercises, graph one full period of each function, starting atx=0.For each function, state the amplitude, period, and midline. State the maximum and minimum y-values and their corresponding x-values on one period forx>0.State the phase shift and vertical translation, if applicable. Round answers to two decimal places if necessary.

f(t)=2sin(t5π6)

f(t)=cos(t+π3)+1

f(t)=4cos(2(t+π4))3

f(t)=sin(12t+5π3)

f(x)=4sin(π2(x3))+7

Determine the amplitude, midline, period, and an equation involving the sine function for the graph shown in (Figure).

A sinusoidal graph with amplitude of 2, range of [-5, -1], period of 4, and midline at y=-3.

Figure 26.

Determine the amplitude, period, midline, and an equation involving cosine for the graph shown in (Figure).

A graph with a cosine parent function, with amplitude of 3, period of pi, midline at y=-1, and range of [-4,2]

Figure 27.

Determine the amplitude, period, midline, and an equation involving cosine for the graph shown in (Figure).

A graph with a cosine parent function with an amplitude of 2, period of 5, midline at y=3, and a range of [1,5].

Figure 28.

Determine the amplitude, period, midline, and an equation involving sine for the graph shown in (Figure).

A sinusoidal graph with amplitude of 4, period of 10, midline at y=0, and range [-4,4].

Figure 29.

Determine the amplitude, period, midline, and an equation involving cosine for the graph shown in (Figure).

A graph with cosine parent function, range of function is [-4,4], amplitude of 4, period of 2.

Figure 30.

Determine the amplitude, period, midline, and an equation involving sine for the graph shown in (Figure).

A graph with sine parent function. Amplitude 2, period 2, midline y=0

Figure 31.

Determine the amplitude, period, midline, and an equation involving cosine for the graph shown in (Figure).

A graph with cosine parent function. Amplitude 2, period 2, midline y=1

Figure 32.

Determine the amplitude, period, midline, and an equation involving sine for the graph shown in (Figure).

A graph with a sine parent function. Amplitude 1, period 4 and midline y=0.

Figure 33.

Algebraic

For the following exercises, letf(x)=sinx.

On[0,2π),solvef(x)=0.

On[0,2π),solvef(x)=12.

Evaluatef(π2).

On[0,2π),f(x)=22.Find all values ofx.

On[0,2π),the maximum value(s) of the function occur(s) at what x-value(s)?

On[0,2π),the minimum value(s) of the function occur(s) at what x-value(s)?

Show thatf(x)=f(x).This means thatf(x)=sinxis an odd function and possesses symmetry with respect to ________________.

For the following exercises, letf(x)=cosx.

On[0,2π),solve the equationf(x)=cosx=0.

On[0,2π),solvef(x)=12.

On[0,2π),find the x-intercepts off(x)=cosx.

On[0,2π),find the x-values at which the function has a maximum or minimum value.

On[0,2π),solve the equationf(x)=32.

Technology

Graphh(x)=x+sinxon[0,2π].Explain why the graph appears as it does.

Graphh(x)=x+sinxon[100,100].Did the graph appear as predicted in the previous exercise?

Graphf(x)=xsinxon[0,2π]and verbalize how the graph varies from the graph off(x)=sinx.

Graphf(x)=xsinxon the window[10,10]and explain what the graph shows.

Graphf(x)=sinxxon the window[5π,5π]and explain what the graph shows.

Real-World Applications

A Ferris wheel is 25 meters in diameter and boarded from a platform that is 1 meter above the ground. The six o’clock position on the Ferris wheel is level with the loading platform. The wheel completes 1 full revolution in 10 minutes. The functionh(t)gives a person’s height in meters above the ground t minutes after the wheel begins to turn.

  1. Find the amplitude, midline, and period ofh(t).
  2. Find a formula for the height functionh(t).
  3. How high off the ground is a person after 5 minutes?

Glossary

amplitude
the vertical height of a function; the constantAappearing in the definition of a sinusoidal function
midline
the horizontal liney=D,whereDappears in the general form of a sinusoidal function
periodic function
a functionf(x)that satisfiesf(x+P)=f(x)for a specific constantPand any value ofx
phase shift
the horizontal displacement of the basic sine or cosine function; the constantCB
sinusoidal function
any function that can be expressed in the formf(x)=Asin(BxC)+Dorf(x)=Acos(BxC)+D