Learning Objectives
In this section, you will:
- Understand and use the inverse sine, cosine, and tangent functions.
- Find the exact value of expressions involving the inverse sine, cosine, and tangent functions.
- Use a calculator to evaluate inverse trigonometric functions.
- Find exact values of composite functions with inverse trigonometric functions.
For any right triangle, given one other angle and the length of one side, we can figure out what the other angles and sides are. But what if we are given only two sides of a right triangle? We need a procedure that leads us from a ratio of sides to an angle. This is where the notion of an inverse to a trigonometric function comes into play. In this section, we will explore the inverse trigonometric functions.
Understanding and Using the Inverse Sine, Cosine, and Tangent Functions
In order to use inverse trigonometric functions, we need to understand that an inverse trigonometric function “undoes” what the original trigonometric function “does,” as is the case with any other function and its inverse. In other words, the domain of the inverse function is the range of the original function, and vice versa, as summarized in (Figure).

Figure 1.
For example, iff(x)=sinx,then we would writef−1(x)=sin−1x.Be aware thatsin−1xdoes not mean1sinx.The following examples illustrate the inverse trigonometric functions:
- Sincesin(π6)=12,thenπ6=sin−1(12).
- Sincecos(π)=−1,thenπ=cos−1(−1).
- Sincetan(π4)=1,thenπ4=tan−1(1).
In previous sections, we evaluated the trigonometric functions at various angles, but at times we need to know what angle would yield a specific sine, cosine, or tangent value. For this, we need inverse functions. Recall that, for a one-to-one function, iff(a)=b,then an inverse function would satisfyf−1(b)=a.
Bear in mind that the sine, cosine, and tangent functions are not one-to-one functions. The graph of each function would fail the horizontal line test. In fact, no periodic function can be one-to-one because each output in its range corresponds to at least one input in every period, and there are an infinite number of periods. As with other functions that are not one-to-one, we will need to restrict the domain of each function to yield a new function that is one-to-one. We choose a domain for each function that includes the number 0. (Figure) shows the graph of the sine function limited to[−π2,π2]and the graph of the cosine function limited to[0,π].

Figure 2. (a) Sine function on a restricted domain of[−π2,π2];(b) Cosine function on a restricted domain of[0,π]
(Figure) shows the graph of the tangent function limited to(−π2,π2).

Figure 3. Tangent function on a restricted domain of(−π2,π2)
These conventional choices for the restricted domain are somewhat arbitrary, but they have important, helpful characteristics. Each domain includes the origin and some positive values, and most importantly, each results in a one-to-one function that is invertible. The conventional choice for the restricted domain of the tangent function also has the useful property that it extends from one vertical asymptote to the next instead of being divided into two parts by an asymptote.
On these restricted domains, we can define the inverse trigonometric functions.
- The inverse sine functiony=sin−1xmeansx=siny.The inverse sine function is sometimes called the arcsine function, and notatedarcsinx.
y=sin−1xhas domain[−1,1]and range[−π2,π2]
- The inverse cosine functiony=cos−1xmeansx=cosy.The inverse cosine function is sometimes called the arccosine function, and notatedarccosx.
y=cos−1xhas domain[−1,1]and range[0,π]
- The inverse tangent functiony=tan−1xmeansx=tany.The inverse tangent function is sometimes called the arctangent function, and notatedarctanx.
y=tan−1xhas domain(−∞,∞)and range(−π2,π2)
The graphs of the inverse functions are shown in (Figure), (Figure), and (Figure). Notice that the output of each of these inverse functions is a number, an angle in radian measure. We see thatsin−1xhas domain[−1,1]and range[−π2,π2],cos−1xhas domain[−1,1]and range[0,π],andtan−1xhas domain of all real numbers and range(−π2,π2).To find the domain and range of inverse trigonometric functions, switch the domain and range of the original functions. Each graph of the inverse trigonometric function is a reflection of the graph of the original function about the liney=x.

Figure 4. The sine function and inverse sine (or arcsine) function

Figure 5. The cosine function and inverse cosine (or arccosine) function

Figure 6. The tangent function and inverse tangent (or arctangent) function
Relations for Inverse Sine, Cosine, and Tangent Functions
For angles in the interval[−π2,π2],ifsiny=x,thensin−1x=y.
For angles in the interval[0,π],ifcosy=x,thencos−1x=y.
For angles in the interval(−π2,π2),iftany=x,thentan−1x=y.
Writing a Relation for an Inverse Function
Givensin(5π12)≈0.96593,write a relation involving the inverse sine.
Try It
Givencos(0.5)≈0.8776,write a relation involving the inverse cosine.
Finding the Exact Value of Expressions Involving the Inverse Sine, Cosine, and Tangent Functions
Now that we can identify inverse functions, we will learn to evaluate them. For most values in their domains, we must evaluate the inverse trigonometric functions by using a calculator, interpolating from a table, or using some other numerical technique. Just as we did with the original trigonometric functions, we can give exact values for the inverse functions when we are using the special angles, specificallyπ6(30°),π4(45°), andπ3(60°), and their reflections into other quadrants.
How To
Given a “special” input value, evaluate an inverse trigonometric function.
- Find anglexfor which the original trigonometric function has an output equal to the given input for the inverse trigonometric function.
- Ifxis not in the defined range of the inverse, find another angleythat is in the defined range and has the same sine, cosine, or tangent asx,depending on which corresponds to the given inverse function.
Evaluating Inverse Trigonometric Functions for Special Input Values
Evaluate each of the following.
- sin−1(12)
- sin−1(−√22)
- cos−1(−√32)
- tan−1(1)
Try It
Evaluate each of the following.
- sin−1(−1)
- tan−1(−1)
- cos−1(−1)
- cos−1(12)
Using a Calculator to Evaluate Inverse Trigonometric Functions
To evaluate inverse trigonometric functions that do not involve the special angles discussed previously, we will need to use a calculator or other type of technology. Most scientific calculators and calculator-emulating applications have specific keys or buttons for the inverse sine, cosine, and tangent functions. These may be labeled, for example, SIN
−1, ARCSIN, or ASIN.
In the previous chapter, we worked with trigonometry on a right triangle to solve for the sides of a triangle given one side and an additional angle. Using the inverse trigonometric functions, we can solve for the angles of a right triangle given two sides, and we can use a calculator to find the values to several decimal places.
In these examples and exercises, the answers will be interpreted as angles and we will useθas the independent variable. The value displayed on the calculator may be in degrees or radians, so be sure to set the mode appropriate to the application.
Evaluating the Inverse Sine on a Calculator
Evaluatesin−1(0.97)using a calculator.
Try It
Evaluatecos−1(−0.4)using a calculator.
How To
Given two sides of a right triangle like the one shown in (Figure), find an angle.

Figure 7.
- If one given side is the hypotenuse of lengthhand the side of lengthaadjacent to the desired angle is given, use the equationθ=cos−1(ah).
- If one given side is the hypotenuse of lengthhand the side of lengthpopposite to the desired angle is given, use the equationθ=sin−1(ph).
- If the two legs (the sides adjacent to the right angle) are given, then use the equationθ=tan−1(pa).
Applying the Inverse Cosine to a Right Triangle
Solve the triangle in (Figure) for the angleθ.

Figure 8.
Try It
Solve the triangle in (Figure) for the angleθ.

Figure 9.
Finding Exact Values of Composite Functions with Inverse Trigonometric Functions
There are times when we need to compose a trigonometric function with an inverse trigonometric function. In these cases, we can usually find exact values for the resulting expressions without resorting to a calculator. Even when the input to the composite function is a variable or an expression, we can often find an expression for the output. To help sort out different cases, letf(x)andg(x)be two different trigonometric functions belonging to the set{sin(x),cos(x),tan(x)}and letf−1(y)andg−1(y)be their inverses.
Evaluating Compositions of the Form f(f−1(y)) and f−1(f(x))
For any trigonometric function,f(f−1(y))=yfor allyin the proper domain for the given function. This follows from the definition of the inverse and from the fact that the range offwas defined to be identical to the domain off−1.However, we have to be a little more careful with expressions of the formf−1(f(x)).
Compositions of a trigonometric function and its inverse
Is it correct thatsin−1(sinx)=x?
No. This equation is correct ifxbelongs to the restricted domain[−π2,π2],but sine is defined for all real input values, and forxoutside the restricted interval, the equation is not correct because its inverse always returns a value in[−π2,π2].The situation is similar for cosine and tangent and their inverses. For example,sin−1(sin(3π4))=π4.
Given an expression of the form f−1(f(θ)) wheref(θ)=sinθ, cosθ, or tanθ,evaluate.
- Ifθis in the restricted domain off, then f−1(f(θ))=θ.
- If not, then find an angleφwithin the restricted domain offsuch thatf(φ)=f(θ).Thenf−1(f(θ))=φ.
Using Inverse Trigonometric Functions
Evaluate the following:
- sin−1(sin(π3))
- sin−1(sin(2π3))
- cos−1(cos(2π3))
- cos−1(cos(−π3))
Try It
Evaluatetan−1(tan(π8))andtan−1(tan(11π9)).
Evaluating Compositions of the Form f−1(g(x))
Now that we can compose a trigonometric function with its inverse, we can explore how to evaluate a composition of a trigonometric function and the inverse of another trigonometric function. We will begin with compositions of the formf−1(g(x)).For special values ofx,we can exactly evaluate the inner function and then the outer, inverse function. However, we can find a more general approach by considering the relation between the two acute angles of a right triangle where one isθ,making the otherπ2−θ.Consider the sine and cosine of each angle of the right triangle in (Figure).

Figure 10. Right triangle illustrating the cofunction relationships
Becausecosθ=bc=sin(π2−θ),we havesin−1(cosθ)=π2−θif0≤θ≤π.Ifθis not in this domain, then we need to find another angle that has the same cosine asθand does belong to the restricted domain; we then subtract this angle fromπ2.Similarly,sinθ=ac=cos(π2−θ),socos−1(sinθ)=π2−θif−π2≤θ≤π2.These are just the function-cofunction relationships presented in another way.
Given functions of the formsin−1(cosx)andcos−1(sinx),evaluate them.
- Ifx is in [0,π],thensin−1(cosx)=π2−x.
- Ifx is not in [0,π],then find another angley in [0,π]such thatcosy=cosx.
sin−1(cosx)=π2−y
- Ifx is in [−π2,π2],thencos−1(sinx)=π2−x.
- Ifx is not in[−π2,π2],then find another angley in [−π2,π2]such thatsiny=sinx.
cos−1(sinx)=π2−y
Evaluating the Composition of an Inverse Sine with a Cosine
Evaluatesin−1(cos(13π6))
- by direct evaluation.
- by the method described previously.
Try It
Evaluatecos−1(sin(−11π4)).
Evaluating Compositions of the Form f(g−1(x))
To evaluate compositions of the formf(g−1(x)),wherefandgare any two of the functions sine, cosine, or tangent andxis any input in the domain ofg−1,we have exact formulas, such assin(cos−1x)=√1−x2.When we need to use them, we can derive these formulas by using the trigonometric relations between the angles and sides of a right triangle, together with the use of Pythagoras’s relation between the lengths of the sides. We can use the Pythagorean identity,sin2x+cos2x=1,to solve for one when given the other. We can also use the inverse trigonometric functions to find compositions involving algebraic expressions.
Evaluating the Composition of a Sine with an Inverse Cosine
Find an exact value forsin(cos−1(45)).
Try It
Evaluatecos(tan−1(512)).
Evaluating the Composition of a Sine with an Inverse Tangent
Find an exact value forsin(tan−1(74)).
Try It
Evaluatecos(sin−1(79)).
Finding the Cosine of the Inverse Sine of an Algebraic Expression
Find a simplified expression forcos(sin−1(x3))for−3≤x≤3.
Try It
Find a simplified expression forsin(tan−1(4x))for−14≤x≤14.
Access this online resource for additional instruction and practice with inverse trigonometric functions.
Visit this website for additional practice questions from Learningpod.
Key Concepts
- An inverse function is one that “undoes” another function. The domain of an inverse function is the range of the original function and the range of an inverse function is the domain of the original function.
- Because the trigonometric functions are not one-to-one on their natural domains, inverse trigonometric functions are defined for restricted domains.
- For any trigonometric functionf(x),ifx=f−1(y),thenf(x)=y.However,f(x)=yonly impliesx=f−1(y)ifxis in the restricted domain off.See (Figure).
- Special angles are the outputs of inverse trigonometric functions for special input values; for example,π4=tan−1(1)andπ6=sin−1(12).See (Figure).
- A calculator will return an angle within the restricted domain of the original trigonometric function. See (Figure).
- Inverse functions allow us to find an angle when given two sides of a right triangle. See (Figure).
- In function composition, if the inside function is an inverse trigonometric function, then there are exact expressions; for example,sin(cos−1(x))=√1−x2.See (Figure).
- If the inside function is a trigonometric function, then the only possible combinations aresin−1(cosx)=π2−xif0≤x≤πandcos−1(sinx)=π2−xif−π2≤x≤π2. See (Figure) and (Figure).
- When evaluating the composition of a trigonometric function with an inverse trigonometric function, draw a reference triangle to assist in determining the ratio of sides that represents the output of the trigonometric function. See (Figure).
- When evaluating the composition of a trigonometric function with an inverse trigonometric function, you may use trig identities to assist in determining the ratio of sides. See (Figure).
Section Exercises
Verbal
Why do the functionsf(x)=sin−1xandg(x)=cos−1xhave different ranges?
Since the functionsy=cosxandy=cos−1xare inverse functions, why iscos−1(cos(−π6))not equal to−π6?
Explain the meaning ofπ6=arcsin(0.5).
Most calculators do not have a key to evaluatesec−1(2).Explain how this can be done using the cosine function or the inverse cosine function.
Why must the domain of the sine function,sinx,be restricted to[−π2,π2]for the inverse sine function to exist?
Discuss why this statement is incorrect:arccos(cosx)=xfor allx.
Determine whether the following statement is true or false and explain your answer: arccos(−x)=π−arccosx.
Algebraic
For the following exercises, evaluate the expressions.
sin−1(√22)
sin−1(−12)
cos−1(12)
cos−1(−√22)
tan−1(1)
tan−1(−√3)
tan−1(−1)
tan−1(−1√3)
For the following exercises, use a calculator to evaluate each expression. Express answers to the nearest hundredth.
cos−1(−0.4)
arcsin(0.23)
arccos(35)
cos−1(0.8)
tan−1(6)
For the following exercises, find the angleθin the given right triangle. Round answers to the nearest hundredth.


For the following exercises, find the exact value, if possible, without a calculator. If it is not possible, explain why.
sin−1(cos(π))
tan−1(sin(π))
cos−1(sin(π3))
tan−1(sin(π3))
sin−1(cos(−π2))
tan−1(sin(4π3))
sin−1(sin(5π6))
tan−1(sin(−5π2))
cos(sin−1(45))
sin(cos−1(35))
sin(tan−1(43))
cos(tan−1(125))
cos(sin−1(12))
For the following exercises, find the exact value of the expression in terms ofx
with the help of a reference triangle.
tan(sin−1(x−1))
sin(cos−1(1−x))
cos(sin−1(1x))
cos(tan−1(3x−1))
tan(sin−1(x+12))
Extensions
For the following exercises, evaluate the expression without using a calculator. Give the exact value.
sin−1(12)−cos−1(√22)+sin−1(√32)−cos−1(1)cos−1(√32)−sin−1(√22)+cos−1(12)−sin−1(0)
For the following exercises, find the function ifsint=xx+1.
cost
sect
cott
cos(sin−1(xx+1))
tan−1(x√2x+1)
Graphical
Graphy=sin−1xand state the domain and range of the function.
Graphy=arccosxand state the domain and range of the function.
Graph one cycle ofy=tan−1xand state the domain and range of the function.
For what value ofxdoessinx=sin−1x?Use a graphing calculator to approximate the answer.
For what value ofxdoescosx=cos−1x?Use a graphing calculator to approximate the answer.
Real-World Applications
Suppose a 13-foot ladder is leaning against a building, reaching to the bottom of a second-floor window 12 feet above the ground. What angle, in radians, does the ladder make with the building?
Suppose you drive 0.6 miles on a road so that the vertical distance changes from 0 to 150 feet. What is the angle of elevation of the road?
An isosceles triangle has two congruent sides of length 9 inches. The remaining side has a length of 8 inches. Find the angle that a side of 9 inches makes with the 8-inch side.
Without using a calculator, approximate the value ofarctan(10,000).Explain why your answer is reasonable.
A truss for the roof of a house is constructed from two identical right triangles. Each has a base of 12 feet and height of 4 feet. Find the measure of the acute angle adjacent to the 4-foot side.
The liney=35xpasses through the origin in the x,y-plane. What is the measure of the angle that the line makes with the positive x-axis?
The liney=−37xpasses through the origin in the x,y-plane. What is the measure of the angle that the line makes with the negative x-axis?
What percentage grade should a road have if the angle of elevation of the road is 4 degrees? (The percentage grade is defined as the change in the altitude of the road over a 100-foot horizontal distance. For example a 5% grade means that the road rises 5 feet for every 100 feet of horizontal distance.)
A 20-foot ladder leans up against the side of a building so that the foot of the ladder is 10 feet from the base of the building. If specifications call for the ladder’s angle of elevation to be between 35 and 45 degrees, does the placement of this ladder satisfy safety specifications?
Suppose a 15-foot ladder leans against the side of a house so that the angle of elevation of the ladder is 42 degrees. How far is the foot of the ladder from the side of the house?
Chapter Review Exercises
Graphs of the Sine and Cosine Functions
For the following exercises, graph the functions for two periods and determine the amplitude or stretching factor, period, midline equation, and asymptotes.
f(x)=−3cosx+3
f(x)=14sinx
f(x)=3cos(x+π6)
f(x)=−2sin(x−2π3)
f(x)=3sin(x−π4)−4
f(x)=2(cos(x−4π3)+1)
f(x)=6sin(3x−π6)−1
f(x)=−100sin(50x−20)
Graphs of the Other Trigonometric Functions
For the following exercises, graph the functions for two periods and determine the amplitude or stretching factor, period,
midline equation, and asymptotes.
f(x)=tanx−4
f(x)=2tan(x−π6)
f(x)=−3tan(4x)−2
f(x)=0.2cos(0.1x)+0.3
For the following exercises, graph two full periods. Identify the period, the phase shift, the amplitude, and asymptotes.
f(x)=13secx
f(x)=3cotx
f(x)=4csc(5x)
f(x)=8sec(14x)
f(x)=23csc(12x)
f(x)=−csc(2x+π)
For the following exercises, use this scenario: The population of a city has risen and fallen over a 20-year interval. Its population may be modeled by the following function:y=12,000+8,000sin(0.628x),where the domain is the years since 1980 and the range is the population of the city.
What is the largest and smallest population the city may have?
Graph the function on the domain of[0,40].
What are the amplitude, period, and phase shift for the function?
Over this domain, when does the population reach 18,000? 13,000?
What is the predicted population in 2007? 2010?
For the following exercises, suppose a weight is attached to a spring and bobs up and down, exhibiting symmetry.
Suppose the graph of the displacement function is shown in (Figure), where the values on the x-axis represent the time in seconds and the y-axis represents the displacement in inches. Give the equation that models the vertical displacement of the weight on the spring.
![A graph of a consine function over one period. Graphed on the domain of [0,10]. Range is [-5,5].](https://s3-us-west-2.amazonaws.com/courses-images/wp-content/uploads/sites/3252/2018/07/19144302/CNX_Precalc_Figure_06_03_225.jpg)
Figure 13.
At time = 0, what is the displacement of the weight?
At what time does the displacement from the equilibrium point equal zero?
What is the time required for the weight to return to its initial height of 5 inches? In other words, what is the period for the displacement function?
Inverse Trigonometric Functions
For the following exercises, find the exact value without the aid of a calculator.
sin−1(1)
cos−1(√32)
tan−1(−1)
cos−1(1√2)
sin−1(−√32)
sin−1(cos(π6))
cos−1(tan(3π4))
sin(sec−1(35))
cot(sin−1(35))
tan(cos−1(513))
sin(cos−1(xx+1))
Graphf(x)=cosxandf(x)=secxon the interval[0,2π)and explain any observations.
Graphf(x)=sinxandf(x)=cscxand explain any observations.
Graph the functionf(x)=x1−x33!+x55!−x77!on the interval[−1,1]and compare the graph to the graph off(x)=sinxon the same interval. Describe any observations.
Chapter Practice Test
For the following exercises, sketch the graph of each function for two full periods. Determine the amplitude, the period, and the equation for the midline.
f(x)=0.5sinx
f(x)=5cosx
f(x)=5sinx
f(x)=sin(3x)
f(x)=−cos(x+π3)+1
f(x)=5sin(3(x−π6))+4
f(x)=3cos(13x−5π6)
f(x)=tan(4x)
f(x)=−2tan(x−7π6)+2
f(x)=πcos(3x+π)
f(x)=5csc(3x)
f(x)=πsec(π2x)
f(x)=2csc(x+π4)−3
For the following exercises, determine the amplitude, period, and midline of the graph, and then find a formula for the function.
Give in terms of a sine function.
Give in terms of a sine function.
Give in terms of a tangent function.
For the following exercises, find the amplitude, period, phase shift, and midline.
y=sin(π6x+π)−3
y=8sin(7π6x+7π2)+6
The outside temperature over the course of a day can be modeled as a sinusoidal function. Suppose you know the temperature is 68°F at midnight and the high and low temperatures during the day are 80°F and 56°F, respectively. Assumingtis the number of hours since midnight, find a function for the temperature,D,in terms oft.
Water is pumped into a storage bin and empties according to a periodic rate. The depth of the water is 3 feet at its lowest at 2:00 a.m. and 71 feet at its highest, which occurs every 5 hours. Write a cosine function that models the depth of the water as a function of time, and then graph the function for one period.
For the following exercises, find the period and horizontal shift of each function.
g(x)=3tan(6x+42)
n(x)=4csc(5π3x−20π3)
Write the equation for the graph in (Figure) in terms of the secant function and give the period and phase shift.

Figure 14.
Iftanx=3,findtan(−x).
Ifsecx=4,findsec(−x).
For the following exercises, graph the functions on the specified window and answer the questions.
Graphm(x)=sin(2x)+cos(3x)on the viewing window[−10,10]by[−3,3].Approximate the graph’s period.
Graphn(x)=0.02sin(50πx)on the following domains inx:[0,1]and[0,3].Suppose this function models sound waves. Why would these views look so different?
Graphf(x)=sinxxon[−0.5,0.5]and explain any observations.
For the following exercises, letf(x)=35cos(6x).
What is the largest possible value forf(x)?
What is the smallest possible value forf(x)?
Where is the function increasing on the interval[0,2π]?
For the following exercises, find and graph one period of the periodic function with the given amplitude, period, and phase shift.
Sine curve with amplitude 3, periodπ3,and phase shift(h,k)=(π4,2)
Cosine curve with amplitude 2, periodπ6,and phase shift(h,k)=(−π4,3)
For the following exercises, graph the function. Describe the graph and, wherever applicable, any periodic behavior, amplitude, asymptotes, or undefined points.
f(x)=5cos(3x)+4sin(2x)
f(x)=esint
For the following exercises, find the exact value.
sin−1(√32)
tan−1(√3)
cos−1(−√32)
cos−1(sin(π))
cos−1(tan(7π4))
cos(sin−1(1−2x))
cos−1(−0.4)
cos(tan−1(x2))
For the following exercises, supposesint=xx+1.
Evaluate the following expressions.
tant
csct
Given (Figure), find the measure of angleθto three decimal places. Answer in radians.

Figure 15.
For the following exercises, determine whether the equation is true or false.
arcsin(sin(5π6))=5π6
arccos(cos(5π6))=5π6
The grade of a road is 7%. This means that for every horizontal distance of 100 feet on the road, the vertical rise is 7 feet. Find the angle the road makes with the horizontal in radians.
Glossary
- arccosine
- another name for the inverse cosine;arccosx=cos−1x
- arcsine
- another name for the inverse sine;arcsinx=sin−1x
- arctangent
- another name for the inverse tangent;arctanx=tan−1x
- inverse cosine function
- the functioncos−1x,which is the inverse of the cosine function and the angle that has a cosine equal to a given number
- inverse sine function
- the functionsin−1x,which is the inverse of the sine function and the angle that has a sine equal to a given number
- inverse tangent function
- the function tan−1x,which is the inverse of the tangent function and the angle that has a tangent equal to a given number
Candela Citations
- Algebra and Trigonometry. Authored by: Jay Abramson, et. al. Provided by: OpenStax CNX. Located at: http://cnx.org/contents/13ac107a-f15f-49d2-97e8-60ab2e3b519c@11.1. License: CC BY: Attribution. License Terms: Download for free at http://cnx.org/contents/13ac107a-f15f-49d2-97e8-60ab2e3b519c@11.1