Learning Objectives
In this section, you will:
- Plot complex numbers in the complex plane.
- Find the absolute value of a complex number.
- Write complex numbers in polar form.
- Convert a complex number from polar to rectangular form.
- Find products of complex numbers in polar form.
- Find quotients of complex numbers in polar form.
- Find powers of complex numbers in polar form.
- Find roots of complex numbers in polar form.
“God made the integers; all else is the work of man.” This rather famous quote by nineteenth-century German mathematician Leopold Kronecker sets the stage for this section on the polar form of a complex number. Complex numbers were invented by people and represent over a thousand years of continuous investigation and struggle by mathematicians such as Pythagoras, Descartes, De Moivre, Euler, Gauss, and others. Complex numbers answered questions that for centuries had puzzled the greatest minds in science.
We first encountered complex numbers in Complex Numbers. In this section, we will focus on the mechanics of working with complex numbers: translation of complex numbers from polar form to rectangular form and vice versa, interpretation of complex numbers in the scheme of applications, and application of De Moivre’s Theorem.
Plotting Complex Numbers in the Complex Plane
Plotting a complex numbera+biis similar to plotting a real number, except that the horizontal axis represents the real part of the number,a,and the vertical axis represents the imaginary part of the number,bi.
How To
Given a complex numbera+bi,plot it in the complex plane.
- Label the horizontal axis as the real axis and the vertical axis as the imaginary axis.
- Plot the point in the complex plane by movingaunits in the horizontal direction andbunits in the vertical direction.
Plotting a Complex Number in the Complex Plane
Plot the complex number 2−3iin the complex plane.
Try It
Plot the point1+5iin the complex plane.
Finding the Absolute Value of a Complex Number
The first step toward working with a complex number in polar form is to find the absolute value. The absolute value of a complex number is the same as its magnitude, or|z|.It measures the distance from the origin to a point in the plane. For example, the graph ofz=2+4i,in (Figure), shows|z|.

Figure 2.
Absolute Value of a Complex Number
Givenz=x+yi,a complex number, the absolute value ofzis defined as
It is the distance from the origin to the point(x,y).
Notice that the absolute value of a real number gives the distance of the number from 0, while the absolute value of a complex number gives the distance of the number from the origin,(0, 0).
Finding the Absolute Value of a Complex Number with a Radical
Find the absolute value ofz=√5−i.
Try It
Find the absolute value of the complex numberz=12−5i.
Finding the Absolute Value of a Complex Number
Givenz=3−4i,find|z|.
Try It
Givenz=1−7i,find|z|.
Writing Complex Numbers in Polar Form
The polar form of a complex number expresses a number in terms of an angleθand its distance from the originr.Given a complex number in rectangular form expressed asz=x+yi,we use the same conversion formulas as we do to write the number in trigonometric form:
We review these relationships in (Figure).

Figure 5.
We use the term modulus to represent the absolute value of a complex number, or the distance from the origin to the point(x,y).The modulus, then, is the same asr,the radius in polar form. We useθto indicate the angle of direction (just as with polar coordinates). Substituting, we have
Polar Form of a Complex Number
Writing a complex number in polar form involves the following conversion formulas:
Making a direct substitution, we have
whereris the modulus and θ is the argument. We often use the abbreviationrcisθto representr(cosθ+isinθ).
Expressing a Complex Number Using Polar Coordinates
Express the complex number4iusing polar coordinates.
Try It
Expressz=3i as rcisθ in polar form.
Finding the Polar Form of a Complex Number
Find the polar form of−4+4i.
Try It
Writez=√3+iin polar form.
Converting a Complex Number from Polar to Rectangular Form
Converting a complex number from polar form to rectangular form is a matter of evaluating what is given and using the distributive property. In other words, givenz=r(cosθ+isinθ),first evaluate the trigonometric functionscosθandsinθ.Then, multiply through byr.
Converting from Polar to Rectangular Form
Convert the polar form of the given complex number to rectangular form:
Finding the Rectangular Form of a Complex Number
Find the rectangular form of the complex number givenr=13andtanθ=512.
Try It
Convert the complex number to rectangular form:
Finding Products of Complex Numbers in Polar Form
Now that we can convert complex numbers to polar form we will learn how to perform operations on complex numbers in polar form. For the rest of this section, we will work with formulas developed by French mathematician Abraham de Moivre (1667-1754). These formulas have made working with products, quotients, powers, and roots of complex numbers much simpler than they appear. The rules are based on multiplying the moduli and adding the arguments.
Products of Complex Numbers in Polar Form
Ifz1=r1(cosθ1+isinθ1)andz2=r2(cosθ2+isinθ2), then the product of these numbers is given as:
Notice that the product calls for multiplying the moduli and adding the angles.
Finding the Product of Two Complex Numbers in Polar Form
Find the product ofz1z2,givenz1=4(cos(80°)+isin(80°))andz2=2(cos(145°)+isin(145°)).
Finding Quotients of Complex Numbers in Polar Form
The quotient of two complex numbers in polar form is the quotient of the two moduli and the difference of the two arguments.
Quotients of Complex Numbers in Polar Form
Ifz1=r1(cosθ1+isinθ1)andz2=r2(cosθ2+isinθ2), then the quotient of these numbers is
Notice that the moduli are divided, and the angles are subtracted.
How To
Given two complex numbers in polar form, find the quotient.
- Divider1r2.
- Findθ1−θ2.
- Substitute the results into the formula:z=r(cosθ+isinθ).Replacerwithr1r2,and replaceθwithθ1−θ2.
- Calculate the new trigonometric expressions and multiply through byr.
Finding the Quotient of Two Complex Numbers
Find the quotient ofz1=2(cos(213°)+isin(213°))andz2=4(cos(33°)+isin(33°)).
Try It
Find the product and the quotient ofz1=2√3(cos(150°)+isin(150°))andz2=2(cos(30°)+isin(30°)).
Finding Powers of Complex Numbers in Polar Form
Finding powers of complex numbers is greatly simplified using De Moivre’s Theorem. It states that, for a positive integern,znis found by raising the modulus to thenthpower and multiplying the argument byn.It is the standard method used in modern mathematics.
De Moivre’s Theorem
Ifz=r(cosθ+isinθ)is a complex number, then
wheren
is a positive integer.
Evaluating an Expression Using De Moivre’s Theorem
Evaluate the expression(1+i)5using De Moivre’s Theorem.
Finding Roots of Complex Numbers in Polar Form
To find the nth root of a complex number in polar form, we use thenthRoot Theorem or De Moivre’s Theorem and raise the complex number to a power with a rational exponent. There are several ways to represent a formula for findingnthroots of complex numbers in polar form.
The nth Root Theorem
To find thenthroot of a complex number in polar form, use the formula given as
wherek=0,1,2,3,...,n−1.We add 2kπntoθnin order to obtain the periodic roots.
Finding the nth Root of a Complex Number
Evaluate the cube roots ofz=8(cos(2π3)+isin(2π3)).
Try It
Find the four fourth roots of16(cos(120°)+isin(120°)).
Access these online resources for additional instruction and practice with polar forms of complex numbers.
Key Concepts
- Complex numbers in the forma+biare plotted in the complex plane similar to the way rectangular coordinates are plotted in the rectangular plane. Label the x-axis as the real axis and the y-axis as the imaginary axis. See (Figure).
- The absolute value of a complex number is the same as its magnitude. It is the distance from the origin to the point:|z|=√a2+b2.See (Figure) and (Figure).
- To write complex numbers in polar form, we use the formulasx=rcosθ,y=rsinθ,and r=√x2+y2.Then,z=r(cosθ+isinθ).See (Figure) and (Figure).
- To convert from polar form to rectangular form, first evaluate the trigonometric functions. Then, multiply through byr.See (Figure) and (Figure).
- To find the product of two complex numbers, multiply the two moduli and add the two angles. Evaluate the trigonometric functions, and multiply using the distributive property. See (Figure).
- To find the quotient of two complex numbers in polar form, find the quotient of the two moduli and the difference of the two angles. See (Figure).
- To find the power of a complex numberzn,raise r to the power n, and multiply θ by n.See (Figure).
- Finding the roots of a complex number is the same as raising a complex number to a power, but using a rational exponent. See (Figure).
Section Exercises
Verbal
A complex number isa+bi.Explain each part.
What does the absolute value of a complex number represent?
How is a complex number converted to polar form?
How do we find the product of two complex numbers?
What is De Moivre’s Theorem and what is it used for?
Algebraic
For the following exercises, find the absolute value of the given complex number.
5+3i
−7+i
−3−3i
√2−6i
2i
2.2−3.1i
For the following exercises, write the complex number in polar form.
2+2i
8−4i
−12−12i
√3+i
3i
For the following exercises, convert the complex number from polar to rectangular form.
z=7cis(π6)
z=2cis(π3)
z=4cis(7π6)
z=7cis(25°)
z=3cis(240°)
z=√2cis(100°)
For the following exercises, findz1z2in polar form.
z1=2√3cis(116°); z2=2cis(82°)
z1=√2cis(205°); z2=2√2cis(118°)
z1=3cis(π4); z2=5cis(π6)
z1=√5cis(5π8); z2=√15cis(π12)
z1=4cis(π2); z2=2cis(π4)
For the following exercises, findz1z2in polar form.
z1=21cis(135°); z2=3cis(65°)
z1=√2cis(90°); z2=2cis(60°)
z1=15cis(120°); z2=3cis(40°)
z1=6cis(π3); z2=2cis(π4)
z1=5√2cis(π); z2=√2cis(2π3)
z1=2cis(3π5); z2=3cis(π4)
For the following exercises, find the powers of each complex number in polar form.
Findz3whenz=5cis(45°).
Findz4whenz=2cis(70°).
Findz2whenz=3cis(120°).
Findz2whenz=4cis(π4).
Findz4whenz=cis(3π16).
Findz3whenz=3cis(5π3).
For the following exercises, evaluate each root.
Evaluate the cube root ofzwhenz=27cis(240°).
Evaluate the square root ofzwhenz=16cis(100°).
Evaluate the cube root ofzwhenz=32cis(2π3).
Evaluate the square root ofzwhenz=32cis(π).
Evaluate the cube root ofzwhenz=8cis(7π4).
Graphical
For the following exercises, plot the complex number in the complex plane.
2+4i
−3−3i
5−4i
−1−5i
3+2i
2i
−4
−2+i
1−4i
Technology
For the following exercises, find all answers rounded to the nearest hundredth.
Use the rectangular to polar feature on the graphing calculator to change5+5ito polar form.
Use the rectangular to polar feature on the graphing calculator to change3−2i
to polar form.
Use the rectangular to polar feature on the graphing calculator to change −3−8i
to polar form.
Use the polar to rectangular feature on the graphing calculator to change4cis(120°)to rectangular form.
Use the polar to rectangular feature on the graphing calculator to change2cis(45°)to rectangular form.
Use the polar to rectangular feature on the graphing calculator to change5cis(210°)to rectangular form.
Glossary
- argument
- the angle associated with a complex number; the angle between the line from the origin to the point and the positive real axis
- De Moivre’s Theorem
- formula used to find thenthpower or nth roots of a complex number; states that, for a positive integern,znis found by raising the modulus to thenthpower and multiplying the angles byn
- modulus
- the absolute value of a complex number, or the distance from the origin to the point(x,y);also called the amplitude
- polar form of a complex number
- a complex number expressed in terms of an angle θ and its distance from the originr;can be found by using conversion formulasx=rcosθ,y=rsinθ,andr=√x2+y2
Candela Citations
- Algebra and Trigonometry. Authored by: Jay Abramson, et. al. Provided by: OpenStax CNX. Located at: http://cnx.org/contents/13ac107a-f15f-49d2-97e8-60ab2e3b519c@11.1. License: CC BY: Attribution. License Terms: Download for free at http://cnx.org/contents/13ac107a-f15f-49d2-97e8-60ab2e3b519c@11.1