The Other Trigonometric Functions

Learning Objectives

In this section you will:

  • Find exact values of the trigonometric functions secant, cosecant, tangent, and cotangent ofπ3,π4,π3,π4,andπ6.π6.
  • Use reference angles to evaluate the trigonometric functions secant, tangent, and cotangent.
  • Use properties of even and odd trigonometric functions.
  • Recognize and use fundamental identities.
  • Evaluate trigonometric functions with a calculator.

A wheelchair ramp that meets the standards of the Americans with Disabilities Act must make an angle with the ground whose tangent is112112or less, regardless of its length. A tangent represents a ratio, so this means that for every 1 inch of rise, the ramp must have 12 inches of run. Trigonometric functions allow us to specify the shapes and proportions of objects independent of exact dimensions. We have already defined the sine and cosine functions of an angle. Though sine and cosine are the trigonometric functions most often used, there are four others. Together they make up the set of six trigonometric functions. In this section, we will investigate the remaining functions.

Finding Exact Values of the Trigonometric Functions Secant, Cosecant, Tangent, and Cotangent

We can also define the remaining functions in terms of the unit circle with a point(x,y)(x,y)corresponding to an angle oft,t,as shown in (Figure). As with the sine and cosine, we can use the(x,y)(x,y)coordinates to find the other functions.

This image is a graph of circle with angle of t inscribed and a radius of 1. Point of (x, y) is at intersection of terminal side of angle and edge of circle.

Figure 1.

The first function we will define is the tangent. The tangent of an angle is the ratio of the y-value to the x-value of the corresponding point on the unit circle. In (Figure), the tangent of anglettis equal toyx,x0.yx,x0.Because the y-value is equal to the sine oft,t,and the x-value is equal to the cosine oft,t,the tangent of anglettcan also be defined assintcost,cost0.sintcost,cost0.The tangent function is abbreviated astan.tan.The remaining three functions can all be expressed as reciprocals of functions we have already defined.

  • The secant function is the reciprocal of the cosine function. In (Figure), the secant of anglettis equal to1cost=1x,x0.1cost=1x,x0.The secant function is abbreviated assec.sec.
  • The cotangent function is the reciprocal of the tangent function. In (Figure), the cotangent of anglettis equal tocostsint=xy,y0.costsint=xy,y0.The cotangent function is abbreviated ascot.cot.
  • The cosecant function is the reciprocal of the sine function. In (Figure), the cosecant of anglettis equal to1sint=1y,y0.1sint=1y,y0.The cosecant function is abbreviated ascsc.csc.

Tangent, Secant, Cosecant, and Cotangent Functions

Ifttis a real number and(x,y)(x,y)is a point where the terminal side of an angle ofttradians intercepts the unit circle, then

tan t=yx,x0sec t=1x,x0csc t=1y,y0cot t=xy,y0tan t=yx,x0sec t=1x,x0csc t=1y,y0cot t=xy,y0

Finding Trigonometric Functions from a Point on the Unit Circle

The point(32,12)(32,12)is on the unit circle, as shown in (Figure). Findsint,cost,tant,sect,csct,sint,cost,tant,sect,csct,andcott.cott.

This is an image of a graph of circle with angle of t inscribed and with radius 1. Point of (negative square root of 3 over 2, 1/2) is at intersection of terminal side of angle and edge of circle.

Figure 2.

Try It

The point(22,22)(22,22)is on the unit circle, as shown in (Figure). Findsint,cost,tant,sect,csct,sint,cost,tant,sect,csct,andcott.cott.

This is an image of a graph of circle with angle of t inscribed with radius 1. Point of (square root of 2 over 2, negative square root of 2 over 2) is at intersection of terminal side of angle and edge of circle.

Figure 3.

Finding the Trigonometric Functions of an Angle

Findsint,cost,tant,sect,csct,sint,cost,tant,sect,csct,andcott.cott.whent=π6.t=π6.

Try It

Findsint,cost,tant,sect,csct,sint,cost,tant,sect,csct,andcott.cott.whent=π3.t=π3.

Because we know the sine and cosine values for the common first-quadrant angles, we can find the other function values for those angles as well by settingxxequal to the cosine andyyequal to the sine and then using the definitions of tangent, secant, cosecant, and cotangent. The results are shown in (Figure).

Angle 00 π6,or 30° π4,or 45° π3,or 60° π2,or 90°
Cosine 1 32 22 12 0
Sine 0 12 22 32 1
Tangent 0 33 1 3 Undefined
Secant 1 233 2 2 Undefined
Cosecant Undefined 2 2 233 1
Cotangent Undefined 3 1 33 0

Using Reference Angles to Evaluate Tangent, Secant, Cosecant, and Cotangent

We can evaluate trigonometric functions of angles outside the first quadrant using reference angles as we have already done with the sine and cosine functions. The procedure is the same: Find the reference angle formed by the terminal side of the given angle with the horizontal axis. The trigonometric function values for the original angle will be the same as those for the reference angle, except for the positive or negative sign, which is determined by x– and y-values in the original quadrant. (Figure) shows which functions are positive in which quadrant.

To help remember which of the six trigonometric functions are positive in each quadrant, we can use the mnemonic phrase “A Smart Trig Class.” Each of the four words in the phrase corresponds to one of the four quadrants, starting with quadrant I and rotating counterclockwise. In quadrant I, which is “A,” all of the six trigonometric functions are positive. In quadrant II, “Smart,” only sine and its reciprocal function, cosecant, are positive. In quadrant III, “Trig,” only tangent and its reciprocal function, cotangent, are positive. Finally, in quadrant IV, “Class,” only cosine and its reciprocal function, secant, are positive.

This image is a graph of circle with each quadrant labeled. Under quadrant I, labels for sin t, cos t, tan t, sec t, csc t, and cot t. Under quadrant II, labels for sin t and csc t. Under quadrant III, labels for tan t and cot t. Under quadrant IV, labels for cos t, sec t.

Figure 4. The trigonometric functions are each listed in the quadrants in which they are positive.

How To

Given an angle not in the first quadrant, use reference angles to find all six trigonometric functions.

  1. Measure the angle formed by the terminal side of the given angle and the horizontal axis. This is the reference angle.
  2. Evaluate the function at the reference angle.
  3. Observe the quadrant where the terminal side of the original angle is located. Based on the quadrant, determine whether the output is positive or negative.

Using Reference Angles to Find Trigonometric Functions

Use reference angles to find all six trigonometric functions of5π6.

Try It

Use reference angles to find all six trigonometric functions of7π4.

Using Even and Odd Trigonometric Functions

To be able to use our six trigonometric functions freely with both positive and negative angle inputs, we should examine how each function treats a negative input. As it turns out, there is an important difference among the functions in this regard.

Consider the functionf(x)=x2,shown in (Figure). The graph of the function is symmetrical about the y-axis. All along the curve, any two points with opposite x-values have the same function value. This matches the result of calculation:(4)2=(4)2,(5)2=(5)2,and so on. Sof(x)=x2is an even function, a function such that two inputs that are opposites have the same output. That meansf(x)=f(x).

This is an image of a graph of and upward facing parabola with points (-2, 4) and (2, 4) labeled.

Figure 5. The functionf(x)=x2is an even function.

Now consider the functionf(x)=x3,shown in (Figure). The graph is not symmetrical about the y-axis. All along the graph, any two points with opposite x-values also have opposite y-values. Sof(x)=x3is an odd function, one such that two inputs that are opposites have outputs that are also opposites. That meansf(x)=f(x).

This is an image of a graph of the function f of x = x to the third power with labels for points (-1, -1) and (1, 1).

Figure 6. The functionf(x)=x3is an odd function.

We can test whether a trigonometric function is even or odd by drawing a unit circle with a positive and a negative angle, as in (Figure). The sine of the positive angle isy.The sine of the negative angle isy.The sine function, then, is an odd function. We can test each of the six trigonometric functions in this fashion. The results are shown in (Figure).

Graph of circle with angle of t and -t inscribed. Point of (x, y) is at intersection of terminal side of angle t and edge of circle. Point of (x, -y) is at intersection of terminal side of angle -t and edge of circle.

Figure 7.

sin t=ysin(t)=ysin tsin(t) cos t=xcos(t)=xcos t=cos(t) tan(t)=yxtan(t)=yxtan ttan(t)
sec t=1xsec(t)=1xsec t=sec(t) csc t=1ycsc(t)=1ycsc tcsc(t) cot t=xycot(t)=xycot tcot(t)

Even and Odd Trigonometric Functions

An even function is one in whichf(x)=f(x).

An odd function is one in whichf(x)=f(x).

Cosine and secant are even:

cos(t)=cos tsec(t)=sec t

Sine, tangent, cosecant, and cotangent are odd:

sin(t)=sin ttan(t)=tan tcsc(t)=csc tcot(t)=cot t

Using Even and Odd Properties of Trigonometric Functions

If the secant of angletis 2, what is the secant oft?

Try It

If the cotangent of angletis3,what is the cotangent oft?

Recognizing and Using Fundamental Identities

We have explored a number of properties of trigonometric functions. Now, we can take the relationships a step further, and derive some fundamental identities. Identities are statements that are true for all values of the input on which they are defined. Usually, identities can be derived from definitions and relationships we already know. For example, the Pythagorean Identity we learned earlier was derived from the Pythagorean Theorem and the definitions of sine and cosine.

Fundamental Identities

We can derive some useful identities from the six trigonometric functions. The other four trigonometric functions can be related back to the sine and cosine functions using these basic relationships:

tant=sintcost
sect=1cost
csct=1sint
cott=1tant=costsint

Using Identities to Evaluate Trigonometric Functions

  1. Givensin(45°)=22,cos(45°)=22,evaluatetan(45°).
  2. Givensin(5π6)=12,cos(5π6)=32,evaluatesec(5π6).

Try It

Evaluatecsc(7π6).

Using Identities to Simplify Trigonometric Expressions

Simplifysecttant.

Try It

Simplify(tant)(cost).

Alternate Forms of the Pythagorean Identity

We can use these fundamental identities to derive alternate forms of the Pythagorean Identity,cos2t+sin2t=1.One form is obtained by dividing both sides bycos2t.

cos2tcos2t+sin2tcos2t=1cos2t1+tan2t=sec2t

The other form is obtained by dividing both sides bysin2t.

cos2tsin2t+sin2tsin2t=1sin2tcot2t+1=csc2t

Alternate Forms of the Pythagorean Identity

1+tan2t=sec2t
cot2t+1=csc2t

Using Identities to Relate Trigonometric Functions

Ifcos(t)=1213andtis in quadrant IV, as shown in (Figure), find the values of the other five trigonometric functions.

This is an image of graph of circle with angle of t inscribed. Point of (12/13, y) is at intersection of terminal side of angle and edge of circle.

Figure 8.

Try It

Ifsec(t)=178and[latex]\,0

As we discussed at the beginning of the chapter, a function that repeats its values in regular intervals is known as a periodic function. The trigonometric functions are periodic. For the four trigonometric functions, sine, cosine, cosecant and secant, a revolution of one circle, or2π,will result in the same outputs for these functions. And for tangent and cotangent, only a half a revolution will result in the same outputs.

Other functions can also be periodic. For example, the lengths of months repeat every four years. Ifxrepresents the length time, measured in years, andf(x)represents the number of days in February, thenf(x+4)=f(x).This pattern repeats over and over through time. In other words, every four years, February is guaranteed to have the same number of days as it did 4 years earlier. The positive number 4 is the smallest positive number that satisfies this condition and is called the period. A period is the shortest interval over which a function completes one full cycle—in this example, the period is 4 and represents the time it takes for us to be certain February has the same number of days.

Period of a Function

The periodPof a repeating functionfis the number representing the interval such thatf(x+P)=f(x)for any value ofx.

The period of the cosine, sine, secant, and cosecant functions is2π.

The period of the tangent and cotangent functions isπ.

Finding the Values of Trigonometric Functions

Find the values of the six trigonometric functions of angletbased on (Figure).

This is an image of a graph of circle with angle of t inscribed. Point of (1/2, negative square root of 3 over 2) is at intersection of terminal side of angle and edge of circle.

Figure 9.

Try It

Find the values of the six trigonometric functions of angletbased on (Figure).

This is an image of a graph of circle with angle of t inscribed. Point of (0, -1) is at intersection of terminal side of angle and edge of circle.

Figure 10.

Finding the Value of Trigonometric Functions

Ifsin(t)=32andcos(t)=12,findsec(t),csc(t),tan(t),cot(t).

Try It

sin(t)=22andcos(t)=22,findsec(t),csc(t),tan(t),andcot(t)

Evaluating Trigonometric Functions with a Calculator

We have learned how to evaluate the six trigonometric functions for the common first-quadrant angles and to use them as reference angles for angles in other quadrants. To evaluate trigonometric functions of other angles, we use a scientific or graphing calculator or computer software. If the calculator has a degree mode and a radian mode, confirm the correct mode is chosen before making a calculation.

Evaluating a tangent function with a scientific calculator as opposed to a graphing calculator or computer algebra system is like evaluating a sine or cosine: Enter the value and press the TAN key. For the reciprocal functions, there may not be any dedicated keys that say CSC, SEC, or COT. In that case, the function must be evaluated as the reciprocal of a sine, cosine, or tangent.

If we need to work with degrees and our calculator or software does not have a degree mode, we can enter the degrees multiplied by the conversion factorπ180to convert the degrees to radians. To find the secant of30°,we could press

(for a scientific calculator):130×π180COSor(for a graphing calculator):1cos(30π180)

How To

Given an angle measure in radians, use a scientific calculator to find the cosecant.

  1. If the calculator has degree mode and radian mode, set it to radian mode.
  2. Enter:1/
  3. Enter the value of the angle inside parentheses.
  4. Press the SIN key.
  5. Press the = key.

How To

Given an angle measure in radians, use a graphing utility/calculator to find the cosecant.

  • If the graphing utility has degree mode and radian mode, set it to radian mode.
  • Enter:1/
  • Press the SIN key.
  • Enter the value of the angle inside parentheses.
  • Press the ENTER key.

Evaluating the Cosecant Using Technology

Evaluate the cosecant of5π7.

Try It

Evaluate the cotangent ofπ8.

Access these online resources for additional instruction and practice with other trigonometric functions.

Key Equations

Tangent function tant=sintcost
Secant function sect=1cost
Cosecant function csct=1sint
Cotangent function cott=1tant=costsint

Key Concepts

  • The tangent of an angle is the ratio of the y-value to the x-value of the corresponding point on the unit circle.
  • The secant, cotangent, and cosecant are all reciprocals of other functions. The secant is the reciprocal of the cosine function, the cotangent is the reciprocal of the tangent function, and the cosecant is the reciprocal of the sine function.
  • The six trigonometric functions can be found from a point on the unit circle. See (Figure).
  • Trigonometric functions can also be found from an angle. See (Figure).
  • Trigonometric functions of angles outside the first quadrant can be determined using reference angles. See (Figure).
  • A function is said to be even iff(x)=f(x)and odd iff(x)=f(x)for all x in the domain of f.
  • Cosine and secant are even; sine, tangent, cosecant, and cotangent are odd.
  • Even and odd properties can be used to evaluate trigonometric functions. See (Figure).
  • The Pythagorean Identity makes it possible to find a cosine from a sine or a sine from a cosine.
  • Identities can be used to evaluate trigonometric functions. See (Figure) and (Figure).
  • Fundamental identities such as the Pythagorean Identity can be manipulated algebraically to produce new identities. See (Figure).
  • The trigonometric functions repeat at regular intervals.
  • The periodPof a repeating functionfis the smallest interval such thatf(x+P)=f(x)for any value ofx.
  • The values of trigonometric functions can be found by mathematical analysis. See (Figure) and (Figure).
  • To evaluate trigonometric functions of other angles, we can use a calculator or computer software. See (Figure).

Section Exercises

Verbal

On an interval of[0,2π),can the sine and cosine values of a radian measure ever be equal? If so, where?

What would you estimate the cosine ofπdegrees to be? Explain your reasoning.

For any angle in quadrant II, if you knew the sine of the angle, how could you determine the cosine of the angle?

Describe the secant function.

Tangent and cotangent have a period ofπ.What does this tell us about the output of these functions?

Algebraic

For the following exercises, find the exact value of each expression.

tanπ6

secπ6

cscπ6

cotπ6

tanπ4

secπ4

cscπ4

cotπ4

tanπ3

secπ3

cscπ3

cotπ3

For the following exercises, use reference angles to evaluate the expression.

tan5π6

sec7π6

csc11π6

cot13π6

tan7π4

sec3π4

csc5π4

cot11π4

tan8π3

sec4π3

csc2π3

cot5π3

tan225°

sec300°

csc150°

cot240°

tan330°

sec120°

csc210°

cot315°

Ifsint=34,andtis in quadrant II, findcost,sect,csct,tant,andcott.

Ifcost=13,andtis in quadrant III, findsint,sect,csct,tant,andcott.

Iftant=125,and0t<π2,findsint,cost,sect,csct,andcott.

Ifsint=32andcost=12,findsect,csct,tant,andcott.

Ifsin40°0.643andcos40°0.766,findsec40°,csc40°,tan40°,andcot40°.

Ifsint=22,what is thesin(t)?

Ifcost=12,what is thecos(t)?

Ifsect=3.1,what is thesec(t)?

Ifcsct=0.34,what is thecsc(t)?

Iftant=1.4,what is thetan(t)?

Ifcott=9.23,what is thecot(t)?

Graphical

For the following exercises, use the angle in the unit circle to find the value of the each of the six trigonometric functions.

This is an image of a graph of circle with angle of t inscribed. Point of (square root of 2 over 2, square root of 2 over 2) is at intersection of terminal side of angle and edge of circle.

This is an image of a graph of circle with angle of t inscribed. Point of (square root of 3 over 2, 1/2) is at intersection of terminal side of angle and edge of circle.
This is an image of a graph of circle with angle of t inscribed. Point of (-1/2, negative square root of 3 over 2) is at intersection of terminal side of angle and edge of circle.

Technology

For the following exercises, use a graphing calculator to evaluate to three decimal places.

csc5π9

cot4π7

secπ10

tan5π8

sec3π4

cscπ4

tan98°

cot33°

cot140°

sec310°

Extensions

For the following exercises, use identities to evaluate the expression.

Iftan(t)2.7,andsin(t)0.94,findcos(t).

Iftan(t)1.3,andcos(t)0.61,findsin(t).

Ifcsc(t)3.2,andcos(t)0.95,findtan(t).

Ifcot(t)0.58,andcos(t)0.5,findcsc(t).

Determine whether the functionf(x)=2sinxcosxis even, odd, or neither.

Determine whether the functionf(x)=3sin2xcosx+secxis even, odd, or neither.

Determine whether the functionf(x)=sinx2cos2xis even, odd, or neither.

Determine whether the functionf(x)=csc2x+secxis even, odd, or neither.

For the following exercises, use identities to simplify the expression.

cscttant

sectcsct

Real-World Applications

The amount of sunlight in a certain city can be modeled by the functionh=15cos(1600d),wherehrepresents the hours of sunlight, anddis the day of the year. Use the equation to find how many hours of sunlight there are on February 10, the 42nd day of the year. State the period of the function.

The amount of sunlight in a certain city can be modeled by the functionh=16cos(1500d),wherehrepresents the hours of sunlight, anddis the day of the year. Use the equation to find how many hours of sunlight there are on September 24, the 267th day of the year. State the period of the function.

The equationP=20sin(2πt)+100models the blood pressure,P,wheretrepresents time in seconds. (a) Find the blood pressure after 15 seconds. (b) What are the maximum and minimum blood pressures?

The height of a piston,h,in inches, can be modeled by the equationy=2cosx+6,wherexrepresents the crank angle. Find the height of the piston when the crank angle is55°.

The height of a piston,h,in inches, can be modeled by the equationy=2cosx+5,wherexrepresents the crank angle. Find the height of the piston when the crank angle is55°.

Chapter Review Exercises

Angles

For the following exercises, convert the angle measures to degrees.

π4

5π3

For the following exercises, convert the angle measures to radians.

210°

180°

Find the length of an arc in a circle of radius 7 meters subtended by the central angle of85°.

Find the area of the sector of a circle with diameter 32 feet and an angle of3π5radians.

For the following exercises, find the angle between0°and360°that is coterminal with the given angle.

420°

80°

For the following exercises, find the angle between 0 and2πin radians that is coterminal with the given angle.

20π11

14π5

For the following exercises, draw the angle provided in standard position on the Cartesian plane.

210°

75°

5π4

π3

Find the linear speed of a point on the equator of the earth if the earth has a radius of 3,960 miles and the earth rotates on its axis every 24 hours. Express answer in miles per hour. Round to the nearest hundredth.

A car wheel with a diameter of 18 inches spins at the rate of 10 revolutions per second. What is the car’s speed in miles per hour? Round to the nearest hundredth.

Right Triangle Trigonometry

For the following exercises, use side lengths to evaluate.

cosπ4

cotπ3

tanπ6

cos(π2)=sin(___°)

csc(18°)=sec(___°)

For the following exercises, use the given information to find the lengths of the other two sides of the right triangle.

cosB=35,a=6

tanA=59,b=6

For the following exercises, use (Figure) to evaluate each trigonometric function.

A right triangle with side lengths of 11 and 6. Corners A and B are also labeled. The angle A is opposite the side labeled 11. The angle B is opposite the side labeled 6.

Figure 11.

sin A

tanB

For the following exercises, solve for the unknown sides of the given triangle.

A right triangle with corners labeled A, B, and C. Hypotenuse has length of 4 times square root of 2. Other angles measure 45 degrees.

A right triangle with hypotenuse with length 5, and an angle of 30 degrees.

A 15-ft ladder leans against a building so that the angle between the ground and the ladder is70°.How high does the ladder reach up the side of the building? Find the answer to four decimal places.

The angle of elevation to the top of a building in Baltimore is found to be 4 degrees from the ground at a distance of 1 mile from the base of the building. Using this information, find the height of the building. Find the answer to four decimal places.

Unit Circle

Find the exact value ofsinπ3.

Find the exact value ofcosπ4.

Find the exact value ofcosπ.

State the reference angle for300°.

State the reference angle for3π4.

Compute cosine of330°.

Compute sine of5π4.

State the domain of the sine and cosine functions.

State the range of the sine and cosine functions.

The Other Trigonometric Functions

For the following exercises, find the exact value of the given expression.

cosπ6

tanπ4

cscπ3

secπ4

For the following exercises, use reference angles to evaluate the given expression.

sec11π3

sec315°

Ifsec(t)=2.5,what is thesec(t)?

Iftan(t)=0.6,what is thetan(t)?

Iftan(t)=13,findtan(tπ).

Ifcos(t)=22,findsin(t+2π).

Which trigonometric functions are even?

Which trigonometric functions are odd?

Chapter Practice Test

Convert5π6radians to degrees.

Convert620°to radians.

Find the length of a circular arc with a radius 12 centimeters subtended by the central angle of30°.

Find the area of the sector with radius of 8 feet and an angle of5π4 radians.

Find the angle between0°and360°
that is coterminal with375°.

Find the angle between 0 and2πin radians that is coterminal with4π7.

Draw the angle315°in standard position on the Cartesian plane.

Draw the angleπ6in standard position on the Cartesian plane.

A carnival has a Ferris wheel with a diameter of 80 feet. The time for the Ferris wheel to make one revolution is 75 seconds. What is the linear speed in feet per second of a point on the Ferris wheel? What is the angular speed in radians per second?

Find the missing sides of the triangleABC:sinB=34,c=12.

Find the missing sides of the triangle.

A right triangle with hypotenuse length of 9 and angle measure of 60 degrees.

The angle of elevation to the top of a building in Chicago is found to be 9 degrees from the ground at a distance of 2000 feet from the base of the building. Using this information, find the height of the building.

Find the exact value ofsinπ6.

Compute sine of240°.

State the domain of the sine and cosine functions.

State the range of the sine and cosine functions.

Find the exact value ofcotπ4.

Find the exact value oftanπ3.

Use reference angles to evaluatecsc7π4.

Use reference angles to evaluatetan210°.

Ifcsct=0.68,what is thecsc(t)?

Ifcost=32,findcos(t2π).

Find the missing angle:cos(π6)=sin(___)

Glossary

cosecant
the reciprocal of the sine function: on the unit circle,csct=1y,y0
cotangent
the reciprocal of the tangent function: on the unit circle,cott=xy,y0
identities
statements that are true for all values of the input on which they are defined
period
the smallest intervalPof a repeating functionfsuch thatf(x+P)=f(x)
secant
the reciprocal of the cosine function: on the unit circle,sect=1x,x0
tangent
the quotient of the sine and cosine: on the unit circle,tant=yx,x0