Learning Outcomes
- Simplify complex expressions using a combination of exponent rules
- Simplify quotients that require a combination of the properties of exponents
All the exponent properties we developed earlier in this chapter with whole number exponents apply to integer exponents, too. We restate them here for reference as we will be using them here to simplify various exponential expressions.
Summary of Exponent Properties
If [latex]a,b[/latex] are real numbers and [latex]m,n[/latex] are integers, then
[latex]\begin{array}{cccc}\mathbf{\text{Product Property}}\hfill & & & {a}^{m}\cdot {a}^{n}={a}^{m+n}\hfill \\ \mathbf{\text{Power Property}}\hfill & & & {\left({a}^{m}\right)}^{n}={a}^{m\cdot n}\hfill \\ \mathbf{\text{Product to a Power Property}}\hfill & & & {\left(ab\right)}^{m}={a}^{m}{b}^{m}\hfill \\ \mathbf{\text{Quotient Property}}\hfill & & & {\Large\frac{{a}^{m}}{{a}^{n}}}={a}^{m-n},a\ne 0\hfill \\ \mathbf{\text{Zero Exponent Property}}\hfill & & & {a}^{0}=1,a\ne 0\hfill \\ \mathbf{\text{Quotient to a Power Property}}\hfill & & & {\left({\Large\frac{a}{b}}\right)}^{m}={\Large\frac{{a}^{m}}{{b}^{m}}},b\ne 0\hfill \\ \mathbf{\text{Definition of Negative Exponent}}\hfill & & & {a}^{-n}={\Large\frac{1}{{a}^{n}}}\hfill \end{array}[/latex]
Expressions with negative exponents
The following examples involve simplifying expressions with negative exponents.
example
Simplify:
1. [latex]{x}^{-4}\cdot {x}^{6}[/latex]
2. [latex]{y}^{-6}\cdot {y}^{4}[/latex]
3. [latex]{z}^{-5}\cdot {z}^{-3}[/latex]
Solution
1. | |
[latex]{x}^{-4}\cdot {x}^{6}[/latex] | |
Use the Product Property, [latex]{a}^{m}\cdot {a}^{n}={a}^{m+n}[/latex]. | [latex]{x}^{-4+6}[/latex] |
Simplify. | [latex]{x}^{2}[/latex] |
2. | |
[latex]{y}^{-6}\cdot {y}^{4}[/latex] | |
The bases are the same, so add the exponents. | [latex]{y}^{-6+4}[/latex] |
Simplify. | [latex]{y}^{-2}[/latex] |
Use the definition of a negative exponent, [latex]{a}^{-n}={\Large\frac{1}{{a}^{n}}}[/latex]. | [latex]{\Large\frac{1}{{y}^{2}}}[/latex] |
3. | |
[latex]{z}^{-5}\cdot {z}^{-3}[/latex] | |
The bases are the same, so add the exponents. | [latex]{z}^{-5 - 3}[/latex] |
Simplify. | [latex]{z}^{-8}[/latex] |
Use the definition of a negative exponent, [latex]{a}^{-n}={\Large\frac{1}{{a}^{n}}}[/latex]. | [latex]{\Large\frac{1}{{z}^{8}}}[/latex] |
try it
In the next two examples, we’ll start by using the Commutative Property to group the same variables together. This makes it easier to identify the like bases before using the Product Property of Exponents.
example
Simplify: [latex]\left({m}^{4}{n}^{-3}\right)\left({m}^{-5}{n}^{-2}\right)[/latex]
try it
If we multipy two expressions with numerical coefficients, we multiply the coefficients together.
example
Simplify: [latex]\left(2{x}^{-6}{y}^{8}\right)\left(-5{x}^{5}{y}^{-3}\right)[/latex]
try it
In the next two examples, we’ll use the Power Property and the Product to a Power Property to simplify expressions with negative exponents.
example
Simplify: [latex]{\left({k}^{3}\right)}^{-2}[/latex].
try it
example
Simplify: [latex]{\left(5{x}^{-3}\right)}^{2}[/latex]
try it
In the following video we show another example of how to simplify a product that contains negative exponents.
The following examples involve solving exponential expressions with quotients.
example
Simplify: [latex]{\Large\frac{{\left({x}^{2}\right)}^{3}}{{x}^{5}}}[/latex].
Solution
[latex]{\Large\frac{{\left({x}^{2}\right)}^{3}}{{x}^{5}}}[/latex] | |
Multiply the exponents in the numerator, using the
Power Property. |
[latex]{\Large\frac{{x}^{6}}{{x}^{5}}}[/latex] |
Subtract the exponents. | [latex]x[/latex] |
try it
example
Simplify: [latex]{\Large\frac{{m}^{8}}{{\left({m}^{2}\right)}^{4}}}[/latex]
try it
example
Simplify: [latex]{\left({\Large\frac{{x}^{7}}{{x}^{3}}}\right)}^{2}[/latex]
try it
example
Simplify: [latex]{\left({\Large\frac{{p}^{2}}{{q}^{5}}}\right)}^{3}[/latex]
try it
example
Simplify: [latex]{\Large{\left(\frac{2{x}^{3}}{3y}\right)}}^{4}[/latex]
try it
example
Simplify: [latex]{\Large\frac{{\left({y}^{2}\right)}^{3}{\left({y}^{2}\right)}^{4}}{{\left({y}^{5}\right)}^{4}}}[/latex]
try it
For more similar examples, watch the following video.
To conclude this section, we will simplify quotient expressions with a negative exponent.
example
Simplify: [latex]{\Large\frac{{r}^{5}}{{r}^{-4}}}[/latex].
try it
In the next video we share more examples of simplifying a quotient with negative exponents.
Candela Citations
- Question ID: 146230, 146231, 146233, 146234, 146235, 146893, 146241. Authored by: Lumen Learning. License: CC BY: Attribution. License Terms: IMathAS Community License CC-BY + GPL
- Ex 1: Simplify Expressions using Exponent Properties (Quotient / Power Properties). Authored by: James Sousa (mathispower4u.com). Provided by: `. Located at: https://youtu.be/Mqx8AXl75UY. License: CC BY: Attribution
- Prealgebra. Provided by: OpenStax. License: CC BY: Attribution. License Terms: Download for free at http://cnx.org/contents/caa57dab-41c7-455e-bd6f-f443cda5519c@9.757