Learning Outcomes
- Divide monomials
Divide Monomials
In the previous module we reviewed all the properties of exponents. We will now use them to divide monomials. Later, you will use them to divide polynomials.
EXAMPLE
Find the quotient: [latex]56{x}^{5}\div 7{x}^{2}[/latex]
Solution
[latex]56{x}^{5}\div 7{x}^{2}[/latex] | |
Rewrite as a fraction. | [latex]{\dfrac{56{x}^{5}}{7{x}^{2}}}[/latex] |
Use fraction multiplication to separate the number
part from the variable part. |
[latex]{\dfrac{56}{7}}\cdot {\dfrac{{x}^{5}}{{x}^{2}}}[/latex] |
Use the Quotient Property. | [latex]8{x}^{3}[/latex] |
TRY IT
Find the quotient: [latex]63{x}^{8}\div 9{x}^{4}[/latex]
Find the quotient: [latex]96{y}^{11}\div 6{y}^{8}[/latex]
Try It
When we divide monomials with more than one variable, we write one fraction for each variable.
Example
Find the quotient: [latex]{\dfrac{42{x}^{2}{y}^{3}}{-7x{y}^{5}}}[/latex]
Solution
[latex]{\dfrac{42{x}^{2}{y}^{3}}{-7x{y}^{5}}}[/latex] | |
Use fraction multiplication. | [latex]{\dfrac{42}{-7}}\cdot {\dfrac{{x}^{2}}{x}}\cdot {\dfrac{{y}^{3}}{{y}^{5}}}[/latex] |
Simplify and use the Quotient Property. | [latex]-6\cdot x\cdot {\dfrac{1}{{y}^{2}}}[/latex] |
Multiply. | [latex]-{\dfrac{6x}{{y}^{2}}}[/latex] |
TRY IT
Find the quotient: [latex]{\dfrac{-84{x}^{8}{y}^{3}}{7{x}^{10}{y}^{2}}}[/latex]
Find the quotient: [latex]{\dfrac{-72{a}^{4}{b}^{5}}{-8{a}^{9}{b}^{5}}}[/latex]
EXAMPLE
Find the quotient: [latex]{\dfrac{24{a}^{5}{b}^{3}}{48a{b}^{4}}}[/latex]
Solution
[latex]{\dfrac{24{a}^{5}{b}^{3}}{48a{b}^{4}}}[/latex] | |
Use fraction multiplication. | [latex]{\dfrac{24}{48}}\cdot {\dfrac{{a}^{5}}{a}}\cdot {\dfrac{{b}^{3}}{{b}^{4}}}[/latex] |
Simplify and use the Quotient Property. | [latex]{\dfrac{1}{2}}\cdot {a}^{4}\cdot {\dfrac{1}{b}}[/latex] |
Multiply. | [latex]{\dfrac{{a}^{4}}{2b}}[/latex] |
TRY IT
Find the quotient: [latex]{\dfrac{16{a}^{7}{b}^{6}}{24a{b}^{8}}}[/latex]
Find the quotient: [latex]{\dfrac{27{p}^{4}{q}^{7}}{-45{p}^{12}{q}^{}}}[/latex]
Once you become familiar with the process and have practiced it step by step several times, you may be able to simplify a fraction in one step.
EXAMPLE
Find the quotient: [latex]{\dfrac{14{x}^{7}{y}^{12}}{21{x}^{11}{y}^{6}}}[/latex]
Solution
[latex]{\dfrac{14{x}^{7}{y}^{12}}{21{x}^{11}{y}^{6}}}[/latex] | |
Simplify and use the Quotient Property. | [latex]{\dfrac{2{y}^{6}}{3{x}^{4}}}[/latex] |
Be very careful to simplify [latex]{\dfrac{14}{21}}[/latex] by dividing out a common factor, and to simplify the variables by subtracting their exponents.
TRY IT
Find the quotient: [latex]{\dfrac{28{x}^{5}{y}^{14}}{49{x}^{9}{y}^{12}}}[/latex]
Find the quotient: [latex]{\dfrac{30{m}^{5}{n}^{11}}{48{m}^{10}{n}^{14}}}[/latex]
In all examples so far, there was no work to do in the numerator or denominator before simplifying the fraction. In the next example, we’ll first find the product of two monomials in the numerator before we simplify the fraction.
EXAMPLE
Find the quotient: [latex]{\dfrac{(3{x}^{3}{y}^{2})(10{x}^{2}{y}^{3})}{6{x}^{4}{y}^{5}}}[/latex]
Solution
Remember, the fraction bar is a grouping symbol. We will simplify the numerator first.
[latex]{\dfrac{\left(3{x}^{3}{y}^{2}\right)\left(10{x}^{2}{y}^{3}\right)}{6{x}^{4}{y}^{5}}}[/latex] | |
Simplify the numerator. | [latex]{\dfrac{30{x}^{5}{y}^{5}}{6{x}^{4}{y}^{5}}}[/latex] |
Simplify, using the Quotient Rule. | [latex]5x[/latex] |
TRY IT
Find the quotient: [latex]{\Large\frac{\left(3{x}^{4}{y}^{5}\right)\left(8{x}^{2}{y}^{5}\right)}{12{x}^{5}{y}^{8}}}[/latex]
Find the quotient: [latex]{\Large\frac{\left(-6{a}^{6}{b}^{9}\right)\left(-8{a}^{5}{b}^{8}\right)}{-12{a}^{10}{b}^{12}}}[/latex]
Try It
Candela Citations
- Ex 1: Simplify Fractions. Authored by: James Sousa (Mathispower4u.com). Located at: https://youtu.be/_2Wk7jXf3Ok. License: CC BY: Attribution
- Ex: Simplify Exponential Expressions Using the Power Property of Exponents. Authored by: James Sousa (Mathispower4u.com). Located at: https://youtu.be/Hgu9HKDHTUA. License: CC BY: Attribution
- Question ID: 146014, 146148. Authored by: Lumen Learning. License: CC BY: Attribution. License Terms: IMathAS Community License CC-BY + GPL
- Prealgebra. Provided by: OpenStax. License: CC BY: Attribution. License Terms: Download for free at http://cnx.org/contents/caa57dab-41c7-455e-bd6f-f443cda5519c@9.757