Solutions to Odd-Numbered Exercises
1. The function [latex]y=\sin x[/latex] is one-to-one on [latex]\left[−\frac{\pi}{2}\text{, }\frac{\pi}{2}\right][/latex]; thus, this interval is the range of the inverse function of [latex]y=\sin x\text{, }f\left(x\right)=\sin^{−1}x[/latex]. The function [latex]y=\cos x[/latex] is one-to-one on [0,π]; thus, this interval is the range of the inverse function of [latex]y=\cos x\text{, }f(x)=\cos^{−1}x[/latex].
3. [latex]\frac{\pi}{6}[/latex] is the radian measure of an angle between [latex]−\frac{\pi}{2}[/latex] and [latex]\frac{\pi}{2}[/latex] whose sine is 0.5.
5. In order for any function to have an inverse, the function must be one-to-one and must pass the horizontal line test. The regular sine function is not one-to-one unless its domain is restricted in some way. Mathematicians have agreed to restrict the sine function to the interval [latex]\left[−\frac{\pi}{2}\text{, }\frac{\pi}{2}\right][/latex] so that it is one-to-one and possesses an inverse.
7. True. The angle, [latex]\theta_{1}[/latex] that equals [latex]\arccos(−x)\text{, }x\text{>}0[/latex], will be a second quadrant angle with reference angle, [latex]\theta_{2}[/latex], where [latex]\theta_{2}[/latex] equals [latex]\arccos x\text{, }x\text{>}0[/latex]. Since [latex]\theta_{2}[/latex] is the reference angle for [latex]\theta_{1}[/latex], [latex]\theta_{2}=\pi(−x)=\pi−\arccos x[/latex]
9. [latex]−\frac{\pi}{6}[/latex]
11. [latex]\frac{3\pi}{4}[/latex]
13. [latex]−\frac{\pi}{3}[/latex]
15. [latex]\frac{\pi}{3}[/latex]
17. 1.98
19. 0.93
21. 1.41
23. 0.56 radians
25. 0
27. 0.71
29. −0.71
31. [latex]−\frac{\pi}{4}[/latex]
33. 0.8
35. [latex]\frac{5}{13}[/latex]
37. [latex]\frac{x−1}{\sqrt{−x^{2}+2x}}[/latex]
39. [latex]\frac{\sqrt{x^{2}−1}}{x}[/latex]
41. [latex]\frac{x+0.5}{\sqrt{−x^{2}−x+\frac{3}{4}}}[/latex]
43. [latex]\frac{\sqrt{2x+1}}{x+1}[/latex]
45. [latex]\frac{\sqrt{2x+1}}{x+1}[/latex]
47. t
49. domain [−1,1]; range [0,π]
51. approximately [latex]x=0.00[/latex]
53. 0.395 radians
55. 1.11 radians
57. 1.25 radians
59. 0.405 radians
61. No. The angle the ladder makes with the horizontal is 60 degrees.
Candela Citations
- Precalculus. Authored by: OpenStax College. Provided by: OpenStax. Located at: http://cnx.org/contents/fd53eae1-fa23-47c7-bb1b-972349835c3c@5.175:1/Preface. License: CC BY: Attribution