Solutions 56: Modeling with Trigonometric Equations

Solutions to Odd-Numbered Exercises

1. Physical behavior should be periodic, or cyclical.

3. Since cumulative rainfall is always increasing, a sinusoidal function would not be ideal here.

5. y=3cos(π6x)1y=3cos(π6x)1

7. 5sin(2x)+25sin(2x)+2

9. 4cos(xπ2)34cos(xπ2)3

11. 58sin(xπ2)58sin(xπ2)

13. tan(xπ12)tan(xπ12)

15. Answers will vary. Sample answer: This function could model temperature changes over the course of one very hot day in Phoenix, Arizona.

Graph of f(x) = -18cos(x*pi/12) - 5sin(x*pi/12) + 100 on the interval [0,24]. There is a single peak around 12.

17. 9 years from now

19. 56F56F

21. 1.80241.8024 hours

23. 4:30

25. From July 8 to October 23

27. From day 19 through day 40

29. Floods: July 24 through October 7. Droughts: February 4 through March 27

31. Amplitude: 11, period: 1616, frequency: 6 Hz

33. Amplitude: 5, period: 130130, frequency: 30 Hz

35. P(t)=15cos(π6t)+650+556tP(t)=15cos(π6t)+650+556t

37. P(t)=40cos(π6t)+800(1.04)tP(t)=40cos(π6t)+800(1.04)t

39. D(t)=7(0.89)tcos(40πt)D(t)=7(0.89)tcos(40πt)

41. D(t)=19(0.9265)tcos(26πt)D(t)=19(0.9265)tcos(26πt)

43. 20.120.1 years

45. 17.8 seconds

47. Spring 2 comes to rest first after 8.0 seconds.

49. 500 miles, at 9090

51. y=6(5)x+4sin(π2x)y=6(5)x+4sin(π2x)

53. y=8(12)xcos(π2x)+3y=8(12)xcos(π2x)+3